Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự hỏi tự trả lời
Tui làm theo ông
Đúng 100%
Đúng 100%
Đúng 100%
hỏi thế mà cũng hỏi!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Sau 2 giờ cây nến thứ nhất cháy còn:
1-(1:3x2)=\(\dfrac{1}{3}\)(cây nến thứ nhất)
Sau 2 giờ cấy nến thứ 2 cháy mất:
1-(1:5x2)=\(\dfrac{3}{5}\)(cây nến thứ 2)
⇒\(\dfrac{1}{3}\)cây nến thư nhất= \(\dfrac{3}{5}\)cây nến thứ 2
⇒\(\dfrac{3}{9}\)cây nến thư nhất= \(\dfrac{3}{5}\)cây nến thứ 2
⇒\(\dfrac{1}{9}\)cây nến thư nhất= \(\dfrac{1}{5}\)cây nến thứ 2
⇒Cây nến thứ nhất = \(\dfrac{9}{5}\)cây nến thứ 2
Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3
Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).
Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9.
Nến của Jane cháy được 5 tiếng. Suy ra vận tốc cháy của nến là (a-3)/5.
Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.
Giải phương trình một ẩn trên ta được a = 18 (cm)
Như vậy, cây nến của Peter ban đầu dài 18 cm.
Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3
Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).
Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9.
Nến của Jane cháy được 5 tiếng. Suy ra vận tốc cháy của nến là (a-3)/5.
Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.
Giải phương trình một ẩn trên ta được a = 18 (cm)
Như vậy, cây nến của Peter ban đầu dài 18 cm.
Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3
Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).
Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9.
Nến của Jane cháy được 5 tiếng. Suy ra vận tốc cháy của nến là (a-3)/5.
Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.
Giải phương trình một ẩn trên ta được a = 18 (cm)
Như vậy, cây nến của Peter ban đầu dài 18 cm.
Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3
Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).
Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9.
Nến của Jane cháy được 5 tiếng. Suy ra vận tốc cháy của nến là (a-3)/5.
Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.
Giải phương trình một ẩn trên ta được a = 18 (cm)
Như vậy, cây nến của Peter ban đầu dài 18 cm.
Sau khi 2 cây nến cháy bằng nhau , nến của
Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3
Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).
Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là \(\frac{a}{9}\)
Nến của Jane cháy được 5 tiếng. Suy ra vận tốc cháy của nến là \(\frac{(a-3)}{5}\)
Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có \(\frac{a}{9}=(\frac{2}{3})x(\frac{a-3}{5})\)
Giải phương trình một ẩn trên ta được a = 18 (cm)
Như vậy, cây nến của Peter ban đầu dài 18 cm.
~Chúc bạn học tốt
18 cm.
Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3
Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).
Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9.
Nến của Jane cháy được 5 tiếng. Suy ra vận tốc cháy của nến là (a-3)/5.
Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.
Giải phương trình một ẩn trên ta được a = 18 (cm)
Như vậy, cây nến của Peter ban đầu dài 18 cm.
1) là nến A
2) thứ nhất là lấy 1 xu ra, sau đó cân 4 xu lên nếu 2 lần cân bằng nhau thì xu lấy ra sẽ là tiền giả
Câu 2:chia 9 đồng tiền ra thành 3 phần bằng nhau,đem cân hai phần bất kì,bên nào nhẹ hơn thì có tiền giả.Sau đó đem cân hai đồng bất kì ở bên nhẹ hơn,đồng nào nhẹ hơn là tiền giả ,còn nếu cân thăng bằng thì đồng còn lại là tiền giả.Còn nếu cả hai phần có 3 đồng tiền bằng nhau thì làm như ở trên với 3 đồng tiền còn lại