K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2022

Sau 2 giờ cây nến thứ nhất cháy còn:

        1-(1:3x2)=\(\dfrac{1}{3}\)(cây nến thứ nhất)

Sau 2 giờ cấy nến thứ 2 cháy mất:

        1-(1:5x2)=\(\dfrac{3}{5}\)(cây nến thứ 2)

\(\dfrac{1}{3}\)cây nến thư nhất= \(\dfrac{3}{5}\)cây nến thứ 2

\(\dfrac{3}{9}\)cây nến thư nhất= \(\dfrac{3}{5}\)cây nến thứ 2

\(\dfrac{1}{9}\)cây nến thư nhất= \(\dfrac{1}{5}\)cây nến thứ 2

⇒Cây nến thứ nhất = \(\dfrac{9}{5}\)cây nến thứ 2

 

16 tháng 4 2022

ai giúp mình với ạ

16 tháng 4 2022

hơi khó à nha bạn

 

3 tháng 7 2017

Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3

Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).

Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9. 

Nến của Jane cháy được 5 tiếng. Suy ra  vận tốc cháy của nến là (a-3)/5.

Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.

Giải phương trình một ẩn trên ta được a = 18 (cm)

Như vậy, cây nến của Peter ban đầu dài 18 cm.

~ Chúc học tốt ~

Ai ngang qua xin để lại 1 L - I - K - E

 
14 tháng 3 2018

6cm chuẩn cmnr

9 tháng 3 2017

AI trả lời đầu tiên thì mk tk.Phải đúng nữa.

26 tháng 3 2018

Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3

Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).

Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9. 

Nến của Jane cháy được 5 tiếng. Suy ra  vận tốc cháy của nến là (a-3)/5.

Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.

Giải phương trình một ẩn trên ta được a = 18 (cm)

Như vậy, cây nến của Peter ban đầu dài 18 cm.

Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3

Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).

Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9. 

Nến của Jane cháy được 5 tiếng. Suy ra  vận tốc cháy của nến là (a-3)/5.

Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.

Giải phương trình một ẩn trên ta được a = 18 (cm)

Như vậy, cây nến của Peter ban đầu dài 18 cm.

10 tháng 2 2017

Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3

Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).

Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9. 

Nến của Jane cháy được 5 tiếng. Suy ra  vận tốc cháy của nến là (a-3)/5.

Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.

Giải phương trình một ẩn trên ta được a = 18 (cm)

Như vậy, cây nến của Peter ban đầu dài 18 cm.

10 tháng 2 2017

Sau khi hai cây nến cháy bằng nhau, nến của Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3

Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).

Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là a/9. 

Nến của Jane cháy được 5 tiếng. Suy ra  vận tốc cháy của nến là (a-3)/5.

Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có
a/9 = (2/3) x (a-3)/5.

Giải phương trình một ẩn trên ta được a = 18 (cm)

Như vậy, cây nến của Peter ban đầu dài 18 cm.

1 tháng 6 2018

Sau khi 2 cây nến cháy bằng nhau , nến của

Jane cháy tiếp 4 giờ và của Peter cháy tiếp 6 giờ thì tắt. Trong trường hợp này, thời gian tỷ lệ nghịch với vận tốc cháy. Từ đó ta có tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 4 : 6 = 2 : 3

Gọi chiều dài cây nến của Peter là a (cm). Suy ra, chiều dài cây nến của Jane là
a - 3 (vì nến của Jane ngắn hơn của Peter 3 cm).

Nến của Peter cháy được 9 tiếng. Suy ra vận tốc cháy của nến là \(\frac{a}{9}\)

Nến của Jane cháy được 5 tiếng. Suy ra  vận tốc cháy của nến là \(\frac{(a-3)}{5}\)

Vì tỷ lệ vận tốc cháy giữa nến của Peter và Jane là 2 : 3 nên ta có \(\frac{a}{9}=(\frac{2}{3})x(\frac{a-3}{5})\)

Giải phương trình một ẩn trên ta được a = 18 (cm)

Như vậy, cây nến của Peter ban đầu dài 18 cm.

~Chúc bạn  học tốt