Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)
\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)
cùng nhân tử với 2014>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
a) Ta có: \(x^2\ge0\forall x\in Q\)
\(y^2\ge0\forall x\in Q\)
\(\Rightarrow x^2+y^2+2014\ge2014\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 2014, xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
b, Ta có: \(\left(x+30\right)^2\ge0\forall x\in Q\)
\(\left(y-4\right)^2\ge0\forall x\in Q\)
\(\Rightarrow\left(x+30\right)^2+\left(y-4\right)^2+17\ge17\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là 17, xảy ra khi \(\left\{{}\begin{matrix}\left(x+30\right)^2=0\\\left(y-4\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-30\\y=4\end{matrix}\right.\)
c, Ta có: \(\left(y-9\right)^2\ge0\forall x\in Q\)
\(\left|x-3\right|\ge0\forall x\in Q\)
\(\Rightarrow\left(y-9\right)^2+\left|x-3\right|^2-1\ge-1\forall x\in Q\)
Dấu giá trị nhỏ nhất của biểu thức là -1 xảy ra khi \(\left\{{}\begin{matrix}\left(y-9\right)^2=0\\\left|x-3\right|=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=9\\x=3\end{matrix}\right.\)
a)
\(B=3+3^2+3^3+...+3^{100}\)
\(\Rightarrow3B=3\left(3+3^2+3^3+...+3^{100}\right)\)
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\)
\(\Rightarrow3B-B=\left(3^2+3^3+...+3^{101}\right)-\left(3+3^2+3^3+3^{100}\right)\)
\(\Rightarrow2B=3^{101}-3\)
Mà \(2B+3=3^n\)
\(\Rightarrow3^{101}-3+3=3^n\)
\(\Rightarrow3^{101}=3^n\)
\(\Rightarrow n=101\)
Vậy \(n=101\)
a)
B = 3 + 32 + 33 + ... + 3100
3B = 32 + 33 + 34 + ... + 3101
3B - B = 3101 - 3
⇒ 2B = 3101 - 3
⇒ 2B + 3 = 3101 - 3 + 3
⇒ 3n = 3101
⇒ n = 101
Vậy n = 101
Bài 1: A = 23 + 43 + 63 + ... + 983 + 1003 = 23*(13 + 23 + 33 + ... + 493 + 503) = 23 * 1/4 * 502 * 512 = 13005000.
Bài 2: Xét hiệu:
\(\frac{10^{2015}-1}{10^{2014}-1}>\frac{10^{2014}-1}{10^{2014}-1}=1=\frac{10^{2014}+1}{10^{2014}+1}>\frac{10^{2014}+1}{10^{2015}+1}.\)
Bài 1: Tính:
A=23+43+63+...+983+1003
=22.(12+22+32+...+492+502)
=22.[1+2(1+1)+3(2+1)+...+99(98+1)+100(99+1)]
A = 22 [1+1.2+2+2.3+3+...+98.99+99+99.100+100]
A =22 [(1.2+2.3+3.4+...+99.100)+(1+2+3+...+99+100)]
..................tự tiếp nha
a) \(2^x\times4=128\)
\(2^x=128:4=32=2^5\)
\(x=5\)
b) \(x^{100}=x\)
\(x^{100}-x=0\)
\(x\left(x^{99}-1\right)=0\)
x=0 hoặc x=1
c) \(\left(2x+1\right)^3=125=5^3\)
\(2x+1=5\)
\(x=2\)
d) \(\left(x-2\right)^{2016}=\left(x-2\right)^{2014}\)
\(\left(x-2\right)^{2014}\left(\left(x-2\right)^2-1\right)=0\)
\(x=0\) hoặc \(\left(x-2\right)^2=1\)
x=0 hoặc x=3 hoặc x=1
a)2x.4=128
2x=128:4=32
=>x=5
b)x100=x
=>x=1
c) (2x+1)3 =125
(2x+1)3=53
=> 2x+1=5
2x=5-1=4
x=4:2
x=2
d) (x-2)2016=(x-2)2014
=> x=2 (vì 2-2=1,mà 1 mũ mấy cũng bằng 1)
C. -2014