K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

Bài 1: A = 23 + 43 + 63 + ... + 983 + 1003 = 23*(13 + 23 + 33 + ... + 493 + 503) = 23 * 1/4 * 502 * 512 = 13005000.

Bài 2: Xét hiệu:

\(\frac{10^{2015}-1}{10^{2014}-1}>\frac{10^{2014}-1}{10^{2014}-1}=1=\frac{10^{2014}+1}{10^{2014}+1}>\frac{10^{2014}+1}{10^{2015}+1}.\)

17 tháng 6 2016

Bài 1: Tính:

A=23+43+63+...+983+1003

=22.(12+22+32+...+492+502)

=22.[1+2(1+1)+3(2+1)+...+99(98+1)+100(99+1)]

A = 22 [1+1.2+2+2.3+3+...+98.99+99+99.100+100]

A =22  [(1.2+2.3+3.4+...+99.100)+(1+2+3+...+99+100)]

..................tự tiếp nha

 

5 tháng 4 2015

Gọi phân số 10^2014+1/10^2015+1 là A

Gọi phân số 10^2015+1/10^2016+1

Xét thấy B = 10^2015+1/10^2016+1 là phân số nhỏ hơn 1

=> theo tính chất : Nếu a/b<1 thì a/b<(a+n)/(b+n) (a,b,n thuộc N ;b;n khác 0)

=> B = (10^2015+1)/(10^2016+1) < (10^2015+1+9)/(10^2016+1+9) = (10^2015+10/10^2016+10)

=> B < 10.(10^2014+1)/10.(10^2015+1)

=> B < 10^2014+1/10^2015+1 = A (cùng bớt 10 ở tử và mẫu)

 Vậy B < A                                   

      

11 tháng 2 2018

ta có :

\(10A=\frac{10^{2014}+10}{10^{2014}+1}=\frac{\left(10^{2014}+1\right)+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)

\(10B=\frac{10^{2015}+10}{10^{2015}+1}=\frac{\left(10^{2015}+1\right)+9}{10^{2015}+1}=1+\frac{9}{10^{2015}+1}\)

ta thấy \(10^{2014}+1< 10^{2015}+1\Rightarrow\frac{9}{10^{2014}+1}>\frac{9}{10^{2015}+1}\Rightarrow10A>10B\Rightarrow A>B\)

3 tháng 12 2017
koko
ko 
 ko
20 tháng 6 2017

\(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+.......+\dfrac{1}{10^2}\)

\(D< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+.......+\dfrac{1}{9.10}\)

\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{9}-\dfrac{1}{10}\)

\(D< 1-\dfrac{1}{10}\Leftrightarrow D< 1\left(đpcm\right)\)

9 tháng 7 2018

\(\left(\frac{1}{2^2}-1\right)\cdot\left(\frac{1}{3^2}-1\right)\cdot..\cdot\left(\frac{1}{10^2}-1\right)\)

\(=\left(\frac{1}{2}\cdot\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}\cdot\frac{1}{3}-1\right)\cdot...\cdot\left(\frac{1}{10}\cdot\frac{1}{10}-1\right)\)

\(=\left(\frac{1}{4}-1\right)\cdot\left(\frac{1}{9}-1\right)\cdot...\cdot\left(\frac{1}{100}-1\right)\)

\(=\frac{-3}{4}\cdot\frac{-8}{9}\cdot...\cdot\frac{-99}{100}\)

\(=\frac{\left(-1\right).\left(-3\right)}{2.2}\cdot\frac{\left(-2\right).\left(-4\right)}{3.3}\cdot...\cdot\frac{\left(-9\right).\left(-11\right)}{10.10}\)

\(=\frac{\left(-1\right).\left(-2\right)....\left(-9\right)}{2.3....10}\cdot\frac{\left(-3\right).\left(-4\right)....\left(-11\right)}{2.3.....10}\)

\(=\frac{-1}{10}\cdot\frac{-11}{2}=\frac{-11}{20}\)