Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác \(OIA\) và tam giác \(OIB\) có:
\(OA=OB\)
\(\widehat{AOI}=\widehat{BOI}\)
\(OI\) cạnh chung
suy ra \(\Delta OIA=\Delta OIB\) (c.g.c)
b) Xét tam giác \(OIN\) và tam giác \(OIM\):
\(\widehat{ION}=\widehat{IOM}\)
\(OI\) cạnh chung
\(\widehat{ONI}=\widehat{OMI}\left(=90^o\right)\)
suy ra \(\Delta OIN=\Delta OIM\) (cạnh huyền - góc nhọn)
\(\Rightarrow IN=IM\)
c) \(\Delta OIA=\Delta OIB\) suy ra \(IA=IB\).
Xét tam giác \(INA\) và tam giác \(IMB\):
\(IA=IB\)
\(\widehat{INA}=\widehat{IMB}\left(=90^o\right)\)
\(IN=IM\)
suy ra \(\Delta INA=\Delta IMB\) (cạnh huyền - cạnh góc vuông)
\(\Rightarrow\widehat{AIN}=\widehat{BIM}\)
d) \(\Delta OIN=\Delta OIM\) suy ra \(ON=OM\)
suy ra \(\dfrac{ON}{OA}=\dfrac{OM}{OB}\) suy ra \(MN//AB\).
a: Xét ΔOIA và ΔOIB có
OA=OB
\(\widehat{AOI}=\widehat{BOI}\)
OI chung
Do đó: ΔOIA=ΔOIB
b: Xét ΔONI vuông tại N và ΔOMI vuông tại M có
OI chung
\(\widehat{NOI}=\widehat{MOI}\)
Do đó: ΔONI=ΔOMI
Suy ra: IN=IM
b: Xét ΔOBA có
OH là đường cao
OH là đường phân giác
Do đó: ΔOBA cân tại O
=>OB=OA
Ta có: ΔOBA cân tại O
mà OH là đường cao
nên H là trung điểm của AB
Xét ΔHCA vuông tại H và ΔHOB vuông tại H có
HA=HB
\(\widehat{HAC}=\widehat{HBO}\)(hai góc so le trong, AC//OB)
Do đó: ΔHCA=ΔHOB
=>HC=HO
=>H là trung điểm của OC
Xét ΔAOC có
AH là đường cao
AH là đường trung tuyến
Do đó: ΔAOC cân tại A
=>AC=AO
a: Xét ΔOHA vuông tại H và ΔOHB vuông tại H có
OH chung
\(\widehat{AOH}=\widehat{BOH}\)
Do đó: ΔOHA=ΔOHB
=>OA=OB
b: Điểm D ở đâu vậy bạn?
Xét tam giác AOC và tam giác BOC
có OC chung
góc BOC= góc AOC (GT)
góc CBO = góc CAO = 900
suy ra tam giác AOC = tam giác BOC ( cạnh huyền- góc nhọn)
suy ra AC=BC ( hai cạnh tương ứng)
b) Xét tam giác BCE và tam giác ACD
có góc EBC = góc DAC = 900
AC=BC ( CMT)
góc BCE = góc ACD ( đối đỉnh)
suy ra am giác BCE =tam giác ACD (g.c.g)
suy ra CE=CD (hai cạnh tương ứng)
suy ra tam giác ECD cân tại C
c)