K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
12 tháng 5 2022

a) Xét tam giác \(OIA\) và tam giác \(OIB\) có: 

\(OA=OB\)

\(\widehat{AOI}=\widehat{BOI}\)

\(OI\) cạnh chung

suy ra \(\Delta OIA=\Delta OIB\) (c.g.c) 

b) Xét tam giác \(OIN\) và tam giác \(OIM\):

\(\widehat{ION}=\widehat{IOM}\)

\(OI\) cạnh chung

\(\widehat{ONI}=\widehat{OMI}\left(=90^o\right)\)

suy ra \(\Delta OIN=\Delta OIM\) (cạnh huyền - góc nhọn)

\(\Rightarrow IN=IM\)

c) \(\Delta OIA=\Delta OIB\) suy ra \(IA=IB\).

Xét tam giác \(INA\) và tam giác \(IMB\):

\(IA=IB\)

\(\widehat{INA}=\widehat{IMB}\left(=90^o\right)\)

\(IN=IM\)

suy ra \(\Delta INA=\Delta IMB\) (cạnh huyền - cạnh góc vuông)

\(\Rightarrow\widehat{AIN}=\widehat{BIM}\)

d) \(\Delta OIN=\Delta OIM\) suy ra \(ON=OM\)

suy ra \(\dfrac{ON}{OA}=\dfrac{OM}{OB}\) suy ra \(MN//AB\).

 

a: Xét ΔOIA và ΔOIB có

OA=OB

\(\widehat{AOI}=\widehat{BOI}\)

OI chung

Do đó: ΔOIA=ΔOIB

b: Xét ΔONI vuông tại N và ΔOMI vuông tại M có

OI chung

\(\widehat{NOI}=\widehat{MOI}\)

Do đó: ΔONI=ΔOMI

Suy ra: IN=IM

21 tháng 4 2022

bn cần cả bài hay lm phần nào ạ

21 tháng 4 2022

cả bài ạ

 

b: Xét ΔOBA có

OH là đường cao

OH là đường phân giác

Do đó: ΔOBA cân tại O

=>OB=OA

Ta có: ΔOBA cân tại O

mà OH là đường cao

nên H là trung điểm của AB

Xét ΔHCA vuông tại H và ΔHOB vuông tại H có

HA=HB

\(\widehat{HAC}=\widehat{HBO}\)(hai góc so le trong, AC//OB)

Do đó: ΔHCA=ΔHOB

=>HC=HO

=>H là trung điểm của OC

Xét ΔAOC có

AH là đường cao

AH là đường trung tuyến

Do đó: ΔAOC cân tại A

=>AC=AO

 

a: Xét ΔOHA vuông tại H và ΔOHB vuông tại H có

OH chung

\(\widehat{AOH}=\widehat{BOH}\)

Do đó: ΔOHA=ΔOHB

=>OA=OB

b: Điểm D ở đâu vậy bạn?

6 tháng 3 2020

O A D x C I z B E y

Xét tam giác AOC và tam giác BOC

có OC chung

góc BOC= góc AOC (GT)

góc CBO = góc CAO = 900

suy ra tam giác AOC = tam giác BOC ( cạnh huyền- góc nhọn)

suy ra AC=BC ( hai cạnh tương ứng)

b) Xét tam giác BCE và tam giác ACD

có góc EBC = góc DAC = 900

AC=BC ( CMT)

góc BCE = góc ACD ( đối đỉnh)

suy ra am giác BCE =tam giác ACD (g.c.g)

suy ra CE=CD (hai cạnh tương ứng)

suy ra tam giác ECD cân tại C

c)