\(\overline{510}\)* ;\(\overline{61\cdot16}\) chia hết cho 3<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

a)510*=5100;5103;5106;5109.

*=0;3;6;9.

b)61*16=61116;61416;61716.

*=1;4;7.

23 tháng 6 2019

a) \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)

\(=100100a+10010b+1001c\)

\(=1001\cdot\overline{abc}\)

\(=\overline{abc}\cdot7\cdot11\cdot13\)chia hết cho 11, 13

Đêm rồi không biết c/m chia hết cho 3 :)

b) \(\overline{aaa}=111\cdot a\)chia hết cho a

c) \(\overline{abc}=\overline{abc}\)nên \(\overline{abc}⋮\overline{abc}\)??? :)

23 tháng 6 2019

sửa đề

\(a,\overline{abcabc}⋮7;11;13\)

=\(\overline{abc}.1000+\overline{abc}\)

=\(\overline{abc}\left(1000+1\right)\)

= \(\overline{abc}.1001\)

= \(\overline{abc}.7..11.13\)

=> \(\overline{abcabc}⋮7;11;13\)

\(b,\overline{aaa}:a=111\)

\(=>\overline{aaa}⋮a\)

\(c,\overline{abc}⋮\overline{abc}\)

Do \(\overline{abc}=\overline{abc}\)

=> \(\overline{abc}⋮\overline{abc}\)

N
19 tháng 5 2017

Bài làm :

a) Để 3*5 chia hết cho 3 . Ta có :

3*5 = 3 + ( * ) + 5 ( * N và * <10 )

3*5 = ( 3 + 5 ) + ( * )

3*5 = 8 + (*) chia hết cho 3

Vậy để 3*5 (8 + *)chia hết cho 3

Nên * {1;4;7}

b) Để 7*2 chia hết cho 9 . Ta có :

7*2 = 7 + (*) + 2 ( * N và * < 10 )

7*2 = ( 7 + 2 ) + (*)

7*2 = 9 + (*) chia

Vậy để 7*2 (9 + *) chia hết cho 9

Nên * {0;9}

c) Để *63* chia hết cho cả 2,3,5,9 .

+ Số chia hết cho 2 ; 5 thì chữ số tận cùng của nó phải là số 0

Ta có *630 chia hết cho 2,3,5,9

+ Để *630 chia hết cho 3,9

Ta có :

*630 = (*) + 6 + 3 + 0 ( * N và * < 10 )

*630 = (*) + ( 6 + 3 + 0 )

*630 = (*) + 9 chia hết cho 3 ; 9

Vậy để *630 (* + 9) chia hết cho 3 ; 9

Do * \(\ne0\) nên * {9}

 

10 tháng 7 2017

Để 3*5 chia hết cho 3 thì 3+5+* chia hết cho 3

Ta có 3 + 5 + *=8 + *

* thuộc {1;4;7}

Vậy * thuộc tập hợp {1;4;7}

Để 7*2 chia hết cho 9 thì

7 + 2 + *chia hết cho 9

Ta có 7 + 2 + * = 9 + *

* thuộc {0;9}

Vậy * thuộc {0;9}

Để *63* chia hết cho cả 2;3;5;9 thì

Để *63* chia hết cho cả 2 và 5 thì tận cùng của *63* là 0 tức * thứ hai bằng 0

Thay vào ta có *630

Chia hết cho 9 cx là chia hết cho 3 nên

*630 chia hết cho 9 thì *630 = 6 + 3 + 0 + * = 9 + *

* thứ hai thuộc {0;9} mak * thứ nhất là chữ số hàng nghìn đứng đầu nên * thứ nhất chỉ có thể là 9

Vậy * thứ nhất bằng 9 và * thứ 2 bằng 0

23 tháng 7 2017

ai giúp mk mk tc cho 3 cái

24 tháng 9 2017

C: Dấu hiệu chia hết cho 11 : 

1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11

Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11

Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11 

Suy ra abcdeg chia hết cho 11 

C2 : Ta có

abcdeg = ab . 10000 = cd . 100 + eg

=  ( 9999ab )  +  ( 99cd )+ ( ab + cd + eg ) 

Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11

 Suy ra : abcdeg chia hết cho 11

( cách nào cũng đúng nha ) 

20 tháng 1 2019

a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)

Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)

b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)

Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7

20 tháng 1 2019

Mất 20 phút để làm cái bài này , đánh máy mỏi tay quá gianroi

12 tháng 10 2017

a)

\(\overline{5\circledast8}⋮3khi\left(5+\circledast+8\right)⋮3\Rightarrow\left(13+\circledast\right)⋮3\)

\(\Rightarrow\circledast\) = 2 hoặc \(\circledast\) = 5 hoặc \(\circledast\) = 8.

Vậy chữ số thay cho \(\circledast\) là 2 hoặc 5 hoặc 8.

b)

\(\overline{6\circledast3}⋮9khi\left(6+3+\circledast\right)⋮9\Rightarrow\left(9+\circledast\right)⋮9\)

\(\Rightarrow\circledast\) = 0 hoặc \(\circledast\) = 9.

Vậy chữ số thay \(\circledast\) là 0 hoặc 9

c)

\(\overline{43\circledast}⋮3khi\left(4+3+\circledast\right)⋮3\Rightarrow\circledast=2\text{hoặc}\circledast=5\text{hoặc}\circledast=8\left(1\right)\)

\(\overline{43\circledast}⋮5khi\circledast=0\text{hoặc}\circledast5\)

\(\circledast\) phải thỏa mãn (1) và ( 2) nên \(\circledast\) = 5.

d)

\(\overline{\circledast81\circledast}⋮5\) nên dấu \(\circledast\) ở hàng đơn vị phải bằng 0 hoặc 5

\(\overline{\circledast81\circledast}⋮2\) nên dấu \(\circledast\) ở hàng đơn vị phải bằng 0 ( vì 5 là số lẻ ) . Thay vào ta được số : \(\overline{\circledast810}\)

Để \(\overline{\circledast810}⋮9\) thì \(\left(\circledast+8+1+0\right)⋮9=\left(\circledast+9\right)\Rightarrow\circledast=0\text{hoặc}\circledast=9\)

\(\circledast\) lại là số ở hàng nghìn (là số đầu tiên) nên \(\circledast\) ≠ 0. Do đó \(\circledast\) = 9

Vậy ta được số 9810

15 tháng 4 2017

a)5

b)9

c)5

d)90

4 tháng 10 2016

Ta có:

\(\overline{abcd}=100.\overline{ab}+\overline{cd}\)

\(=100.2.\overline{cd}+\overline{cd}\)

\(=200.\overline{cd}+\overline{cd}\)

\(=201.\overline{cd}⋮67\)

Vậy nếu \(\overline{ab}=2.\overline{cd}\) thì \(\overline{abcd}⋮67\)