Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\)
\(=100100a+10010b+1001c\)
\(=1001\cdot\overline{abc}\)
\(=\overline{abc}\cdot7\cdot11\cdot13\)chia hết cho 11, 13
Đêm rồi không biết c/m chia hết cho 3 :)
b) \(\overline{aaa}=111\cdot a\)chia hết cho a
c) \(\overline{abc}=\overline{abc}\)nên \(\overline{abc}⋮\overline{abc}\)??? :)
sửa đề
\(a,\overline{abcabc}⋮7;11;13\)
=\(\overline{abc}.1000+\overline{abc}\)
=\(\overline{abc}\left(1000+1\right)\)
= \(\overline{abc}.1001\)
= \(\overline{abc}.7..11.13\)
=> \(\overline{abcabc}⋮7;11;13\)
\(b,\overline{aaa}:a=111\)
\(=>\overline{aaa}⋮a\)
\(c,\overline{abc}⋮\overline{abc}\)
Do \(\overline{abc}=\overline{abc}\)
=> \(\overline{abc}⋮\overline{abc}\)
Bài làm :
a) Để 3*5 chia hết cho 3 . Ta có :
3*5 = 3 + ( * ) + 5 ( * ∈ N và * <10 )
3*5 = ( 3 + 5 ) + ( * )
3*5 = 8 + (*) chia hết cho 3
Vậy để 3*5 (8 + *)chia hết cho 3
Nên * ∈{1;4;7}
b) Để 7*2 chia hết cho 9 . Ta có :
7*2 = 7 + (*) + 2 ( * ∈ N và * < 10 )
7*2 = ( 7 + 2 ) + (*)
7*2 = 9 + (*) chia
Vậy để 7*2 (9 + *) chia hết cho 9
Nên * ∈{0;9}
c) Để *63* chia hết cho cả 2,3,5,9 .
+ Số chia hết cho 2 ; 5 thì chữ số tận cùng của nó phải là số 0
Ta có *630 chia hết cho 2,3,5,9
+ Để *630 chia hết cho 3,9
Ta có :
*630 = (*) + 6 + 3 + 0 ( * ∈ N và * < 10 )
*630 = (*) + ( 6 + 3 + 0 )
*630 = (*) + 9 chia hết cho 3 ; 9
Vậy để *630 (* + 9) chia hết cho 3 ; 9
Do * \(\ne0\) nên * ∈{9}
Để 3*5 chia hết cho 3 thì 3+5+* chia hết cho 3
Ta có 3 + 5 + *=8 + *
* thuộc {1;4;7}
Vậy * thuộc tập hợp {1;4;7}
Để 7*2 chia hết cho 9 thì
7 + 2 + *chia hết cho 9
Ta có 7 + 2 + * = 9 + *
* thuộc {0;9}
Vậy * thuộc {0;9}
Để *63* chia hết cho cả 2;3;5;9 thì
Để *63* chia hết cho cả 2 và 5 thì tận cùng của *63* là 0 tức * thứ hai bằng 0
Thay vào ta có *630
Chia hết cho 9 cx là chia hết cho 3 nên
*630 chia hết cho 9 thì *630 = 6 + 3 + 0 + * = 9 + *
* thứ hai thuộc {0;9} mak * thứ nhất là chữ số hàng nghìn đứng đầu nên * thứ nhất chỉ có thể là 9
Vậy * thứ nhất bằng 9 và * thứ 2 bằng 0
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
a)
\(\overline{5\circledast8}⋮3khi\left(5+\circledast+8\right)⋮3\Rightarrow\left(13+\circledast\right)⋮3\)
\(\Rightarrow\circledast\) = 2 hoặc \(\circledast\) = 5 hoặc \(\circledast\) = 8.
Vậy chữ số thay cho \(\circledast\) là 2 hoặc 5 hoặc 8.
b)
\(\overline{6\circledast3}⋮9khi\left(6+3+\circledast\right)⋮9\Rightarrow\left(9+\circledast\right)⋮9\)
\(\Rightarrow\circledast\) = 0 hoặc \(\circledast\) = 9.
Vậy chữ số thay \(\circledast\) là 0 hoặc 9
c)
\(\overline{43\circledast}⋮3khi\left(4+3+\circledast\right)⋮3\Rightarrow\circledast=2\text{hoặc}\circledast=5\text{hoặc}\circledast=8\left(1\right)\)
\(\overline{43\circledast}⋮5khi\circledast=0\text{hoặc}\circledast5\)
Vì \(\circledast\) phải thỏa mãn (1) và ( 2) nên \(\circledast\) = 5.
d)
Vì \(\overline{\circledast81\circledast}⋮5\) nên dấu \(\circledast\) ở hàng đơn vị phải bằng 0 hoặc 5
Mà \(\overline{\circledast81\circledast}⋮2\) nên dấu \(\circledast\) ở hàng đơn vị phải bằng 0 ( vì 5 là số lẻ ) . Thay vào ta được số : \(\overline{\circledast810}\)
Để \(\overline{\circledast810}⋮9\) thì \(\left(\circledast+8+1+0\right)⋮9=\left(\circledast+9\right)\Rightarrow\circledast=0\text{hoặc}\circledast=9\)
Mà \(\circledast\) lại là số ở hàng nghìn (là số đầu tiên) nên \(\circledast\) ≠ 0. Do đó \(\circledast\) = 9
Vậy ta được số 9810
Ta có:
\(\overline{abcd}=100.\overline{ab}+\overline{cd}\)
\(=100.2.\overline{cd}+\overline{cd}\)
\(=200.\overline{cd}+\overline{cd}\)
\(=201.\overline{cd}⋮67\)
Vậy nếu \(\overline{ab}=2.\overline{cd}\) thì \(\overline{abcd}⋮67\)
a)510*=5100;5103;5106;5109.
*=0;3;6;9.
b)61*16=61116;61416;61716.
*=1;4;7.