Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(4\left(x-1\right)^{100}-3^{100}=3^{101}\)
\(\Leftrightarrow\)\(4\left(x-1\right)^{100}=3^{101}+3^{100}\)
\(\Leftrightarrow\)\(4\left(x-1\right)^{100}=3^{100}\left(3+1\right)\)
\(\Leftrightarrow\)\(4\left(x-1\right)^{100}=3^{100}.4\)
\(\Leftrightarrow\)\(\left(x-1\right)^{100}=3^{100}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(x-1\right)^{100}=3^{100}\\\left(x-1\right)^{100}=\left(-3\right)^{100}\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=3+1\\x=-3+1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=4\\x=-2\end{cases}}}\)
Vậy \(x=-2\) hoặc \(x=4\)
Chúc bạn học tốt ~
A = |\(x\) + 19| + 1980
|\(x\) + 19| ≥ 0 \(\forall\) \(x\)
|\(x\) + 19| + 1980 ≥ 1980 ∀ \(x\)
A ≥ 1980 dấu bằng xảy khi \(x\) + 19 = 0 hay \(x\) = -19
Kết luận A đạt giá trị nhỏ nhất là 1980 khi \(x\) = -19
B = |\(x\) + 20| + |y - 21| + 2020
|\(x\) + 20| ≥ 0 ∀ \(x\); |y - 21| ≥ 0 ∀ y
B = |\(x\) + 20| + |y - 21| + 2020 ≥ 2020
B ≥ 2020 dấu bằng xảy ra khi \(\left\{{}\begin{matrix}x+20=0\\y-21=0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x=-20\\y=21\end{matrix}\right.\)
Bmin = 2020 khi (\(x;y\)) = (-20; 21)
1. Với cơ số là 4 và số mũ chẵn thì ta luôn được 1 số có chữ số tận cùng là 6
2. a là số nguyên âm, IaI là số nguyên dưong. Hai số a đối nhau => A=0
ta có: \(2x^2\ge0\)
\(\left(y+1\right)^4\ge0\)
=>\(2x^2+\left(y+1\right)^4+1\ge1\)
dấu = xảy ra khi x=0 và y=-1
vậy GTNN của A = 1
khi x=0 và y=-1