K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2017

1.x(x2-1)=0
      x2-1=0:x
         x2=1
         x=1

 

7 tháng 5 2017
  1. <=>  x=0 hoặc x2=1 <=> x=0 hoặc x=1, x= -1
  2. <=> (x+6)(3x-1+1)=0 <=.>X=6 hoặc  X=0
  3. <=> 4x2+20x+25 = x2+4x+4  <=> 3x2+16x+21 =0 <=> 3x2+9x+7x+21=0 <=> 3x(x+3)+7(x+3)=0 <=> (x+3)(3x+7)=0 <=> X=0 hoặc X=-7/3
  4. <=> 2X(2X-3) +(2X-3)(2-5X)=0 <=> (2X-3)(2X+2-5X)=0 <=> (2X-3)(2-3X) =0 <=> X=3/2 hoặc X=2/3
  5. <=> (X-2)(X+1) - (X-2)(X+2) =0 <=> (X-2)(X+1-X-2)=0 <=> (X-2)(-1) =0 <=> X=2
8 tháng 2 2020

1. a = 3 thì phương trình trở thành:

\(\frac{x+3}{3-x}-\frac{x-3}{3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2}-x^2\)

\(\Leftrightarrow\frac{\left(x+3\right)^2+\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\frac{-3\left[-9+1\right]}{9}-x^2\)

\(\Leftrightarrow\frac{x^2+6x+9+x^2-6x+9}{\left(3-x\right)\left(3+x\right)}=\frac{-3.\left(-8\right)}{9}-x^2\)

\(\Leftrightarrow\frac{2x^2+18}{9-x^2}=\frac{24}{9}-x^2\)

\(\Leftrightarrow\frac{2x^2+18}{9-x^2}+x^2=\frac{24}{9}\)

\(\Leftrightarrow\frac{2x^2+18+9x^2-x^4}{9-x^2}=\frac{24}{9}\)

\(\Leftrightarrow\frac{11x^2+18-x^4}{9-x^2}=\frac{24}{9}\)

\(\Leftrightarrow99x^2+18-9x^4=216-24x^2\)

\(\Leftrightarrow9x^4-123x^2+198=0\)

Đặt \(x^2=t\left(t\ge0\right)\)

Phương trình trở thành \(9t^2-123t+198=0\)

Ta có \(\Delta=123^2-4.9.198=8001,\sqrt{\Delta}=3\sqrt{889}\)

\(\Rightarrow\orbr{\begin{cases}t=\frac{123+3\sqrt{889}}{18}=\frac{41+\sqrt{889}}{6}\\t=\frac{123-3\sqrt{889}}{18}=\frac{41-\sqrt{889}}{6}\end{cases}}\)

Lúc đó \(\orbr{\begin{cases}x^2=\frac{41+\sqrt{889}}{6}\\x^2=\frac{41-\sqrt{889}}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{41+\sqrt{889}}{6}}\\x=\pm\sqrt{\frac{41-\sqrt{889}}{6}}\end{cases}}\)

Vậy pt có 4 nghiệm \(S=\left\{\pm\sqrt{\frac{41+\sqrt{889}}{6}};\pm\sqrt{\frac{41-\sqrt{889}}{6}}\right\}\)

8 tháng 2 2020

Sửa)):

a = -3 mà ghi lôn a = 3.giải tương tự như 3

17 tháng 3 2020

1. \(\left(x+1\right)^2-3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+1-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+1-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)

Vậy ...

\(x\left(x+2\right)-3\left(-x-2\right)=0\)

\(\Leftrightarrow x^2+2x+3x+6=0\)

\(\Leftrightarrow x^2+5x+6=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)

Vậy ...

Còn cậu nữa chịu rồi !

17 tháng 3 2020

câu 2 nhé :

\(3x\left(2x-8\right)-\left(2x-8\right)^2=0\)

câu này em phải sử dụng tam thức bậc 2 liệu em đã học chưa z :(????

7 tháng 5 2017

1. 2x -8 =0

2. 4x + 274/21 = 0

20 tháng 3 2018

\(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

đặt \(\left(x^2+x\right)=t\)  ta có 

\(t^2+4t-12=0\)

\(\Leftrightarrow t^2+6t-2t-12=0\)

\(\Leftrightarrow t\left(t+6\right)-2\left(t+6\right)=0\)

\(\Leftrightarrow\left(t-2\right)\left(t+6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=2\\t=-6\end{cases}}\)

khi đó giả lại biến \(\left(x^2+x\right)\) rồi làm như bình thường 

2 tháng 1 2018

giải giúp mình nhé

2 tháng 1 2018

Mk nghĩ bn nên ghi biểu thức lại rõ ràng đi, chứ như zầy khó nhìn quá, mk k hiểu

9 tháng 2 2017

Bài 3a)

\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)

mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)