Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. \(=\sqrt{\left(\sqrt{\frac{7}{2}}+\sqrt{\frac{3}{2}}\right)^2}+\sqrt{\left(\sqrt{\frac{7}{2}}-\sqrt{\frac{3}{2}}\right)^2}-2\sqrt{4\sqrt{7}}=\frac{7}{2}+\frac{3}{2}+\frac{7}{2}-\frac{3}{2}-2\sqrt{4\sqrt{7}}\)
\(=7-2\sqrt{4\sqrt{7}}\)
cho hỏi tại sao có số \(\frac{7}{2};\frac{3}{2}\)zậy chỉ với
\(x+y+xy=11\Leftrightarrow x\left(y+1\right)+y+1=12\Leftrightarrow\left(x+1\right)\left(y+1\right)=12\)(1)
\(y\left(z+1\right)+z+1=48\Leftrightarrow\left(y+1\right)\left(z+1\right)=48\left(2\right)\)
\(z\left(x+1\right)+x+1=36\Leftrightarrow\left(z+1\right)\left(x+1\right)=36\left(3\right)\)
Lấy vế nhân vế của (1) (2) và (3) ta đc : \(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=12\cdot36\cdot48=144^2\)
=> \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=144\) hoặc = -144
(+) Với \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=144\)
=> z + 1 = 144 : 12 = 12 => z = 11
=> \(x+1=144:48=3\Rightarrow x=2\)
=> \(y+1=144:36=4\Leftrightarrow y=3\)
(+) Với ( x +1 )( y +1 )( z + 1 ) = -144 ( tương tự )
99 = 76 + 90 = 166
768+90 x6 = 5148
1=1
Ta có \(\Delta=b^2-4ac=\left(-\left(m+5\right)\right)^2-4.\left(2m+6\right)=m^2+10m+25-8m-24=m^2+2m+1=\left(m+1\right)^2\)
Ta có (m+1)2 >= 0 với mọi m => \(\Delta>=0\) Do đó pt đã cho luôn có nghiệm với mọi m
Asp dụng hệ thức viet ta có x1+x2=-b/a =m+5 x1.x2 = c/a =2m+6
TA CÓ X13+X23=35 <=>(x1+x2)(\(x_1^2-x_1x_2+x_{2^2}\)) -35=0 <=>(x1 +x2) ((x1+x2)^2-2x1x2-x1x2 )-35=0 <=> (m+5) ((m+5)^2-3.(2m+6))-35=0 đến ddaaay tự làm nhá lười gõ rồi
\(1.\sqrt{\left(2x-1\right)^2}=6\)
\(\Rightarrow2x-1=\hept{\begin{cases}6\\-6\end{cases}}\)
\(\Rightarrow2x=\hept{\begin{cases}7\\-5\end{cases}}\)
\(\Rightarrow x=\hept{\begin{cases}\frac{7}{2}\\-\frac{5}{2}\end{cases}}\)
\(2;\sqrt{x^2+4x+4}=5\)
\(\Rightarrow\sqrt{x^2+2.2x+2^2}=5\)
\(\Rightarrow\sqrt{\left(x+2\right)^2}=5\)
\(\Rightarrow\hept{\begin{cases}x+2=5\\x+2=-5\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\x=-7\end{cases}}\)
Làm tương tự
\(\sqrt{3-\sqrt{5}}\sqrt{3-\sqrt{5}}\)\(\sqrt{3+\sqrt{5}}\)\(+\sqrt{3+\sqrt{5}}\sqrt{3+\sqrt{5}}\sqrt{3-\sqrt{5}}\)
=\(\sqrt{3-\sqrt{5}}\cdot\sqrt{3^2-5}+\sqrt{3+\sqrt{5}}\cdot\sqrt{3^2-5}\)=\(2\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)=\sqrt{2}\left(\sqrt{2\cdot3-2\sqrt{5}}+\sqrt{2\cdot3+2\sqrt{5}}\right)\) =\(=\sqrt{2}\left(\sqrt{5}-1+\sqrt{5}+1\right)=2\sqrt{10}\)
b tuong tu nha ban ^.^
(14,78-a)/(2,87+a)=4/1
14,78+2,87=17,65
Tổng số phần bằng nhau là 4+1=5
Mỗi phần có giá trị bằng 17,65/5=3,53
=>2,87+a=3,53
=>a=0,66.
\(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}\)=\(\frac{\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)}{\sqrt{7}\left(\sqrt{3}+\sqrt{5}\right)}\)=\(\frac{\sqrt{2}}{\sqrt{7}}\)