K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

\(\Leftrightarrow2\left(\sqrt{x+4}-3\right)-4\left(\sqrt{2x-6}-2\right)-x+5=0\)
\(\Leftrightarrow2.\frac{x+4-9}{\sqrt{x+4}+3}-4.\frac{2x-6-4}{\sqrt{2x-6}+2}-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{2}{\sqrt{x+4}+3}-\frac{8}{\sqrt{2x-6}+2}-1\right)=0\)
Có: \(x\ge3\left(ĐK\right)\Rightarrow2<\sqrt{x+4}+3\Rightarrow\frac{2}{\sqrt{x+4}+3}-1<0\)
\(\Rightarrow\frac{2}{\sqrt{x+4}+3}-\frac{8}{\sqrt{2x-6}+2}-1<0\)
Vậy pt có nghiệm là x=5

23 tháng 1 2016

x=5

tí nữa mình làm chi tiết cho

18 tháng 6 2017

1 .      \(\sqrt{x^4-2x^2+1}=x-1\)

<=>  \(\sqrt{\left(x^2-1\right)^2}=x-1\)

<=> \(x^2-1=x-1\)

<=> \(x^2-x=0\)(vậy pt vô nghiệm)

18 tháng 6 2017

1,\(\sqrt{\left(x^2-1\right)^2}=x-1\)

<=>\(x^2-x=0\)

<=>\(\orbr{\begin{cases}x1=0\\x2=1\end{cases}}\)

1,\(\sqrt{\left(x^2+4\right)}=5-\sqrt{\left(x^2+10\right)}\)

<=>\(x^2+4=25-10\sqrt{x^2+10}+x^2+10\)

<=>x^2 = -0.39 vô lý  => vô nhiệm 

8 tháng 10 2019

2.\(\sqrt{9x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}=6-4\sqrt{x}\)

\(\Leftrightarrow3\sqrt{x}-5\sqrt{x}+4\sqrt{x}=6\)

\(\Leftrightarrow2\sqrt{x}=6\)

\(\Leftrightarrow\sqrt{x}=\frac{6}{2}\)

\(\Leftrightarrow\sqrt{x}=3\)

\(\Leftrightarrow\left(\sqrt{x}\right)^2=\left(3\right)^2\)

\(\Leftrightarrow x=9\)

vậy x=9 

mình chỉ giúp bạn được vậy thui :)

chúc bạn học tốt nha:)))

19 tháng 5 2016

a) ta có :\(A=\sqrt{100-2\sqrt{9}}=\sqrt{100-6}=\sqrt{94}\)

b) A=B( đkxđ:x>=2)

<=> \(\sqrt{2x-4}=\sqrt{94}\)

<=> 2x-4=94

<=> x=49

27 tháng 7 2015

3. ĐK: \(x^2-2x-1\ge0\Leftrightarrow x\le1-\sqrt{2}\text{ hoặc }x\ge1+\sqrt{2}\)

\(pt\Leftrightarrow\sqrt[3]{x^3-14}-\left(x-2\right)+2\sqrt{x^2-2x-1}=0\)

Ta sẽ chứng minh phương trình này có \(VT\ge VP\)

\(VT\ge\frac{x^3-14-\left(x-2\right)^3}{A^2+AB+B^2}+0\text{ }\left(A=\sqrt[3]{x^3-14};\text{ }B=x-2\right)\)

\(=\frac{6\left(x^2-2x-1\right)}{\left(A+\frac{B}{2}\right)^2+\frac{3B^2}{4}}\ge0=VP\text{ }\left(do\text{ }x^2-2x-1\ge0\right)\)

Dấu "=" xảy ra khi \(x^2-2x-1=0\Leftrightarrow x=1+\sqrt{2}\text{ hoặc }x=1-\sqrt{2}\)

\(\text{Kết luận: }x\in\left\{1+\sqrt{2};\text{ }1-\sqrt{2}\right\}\)

\(\sqrt{x^2+x+1}=x+1\)

\(\Leftrightarrow\left(\sqrt{x^2+x+1}\right)^2=\left(x+1\right)^2\)

\(\Leftrightarrow x^2+x+1=x^2+2x+1\)

\(\Leftrightarrow x=2x\)

\(\Leftrightarrow2x-x=0\)

\(\Leftrightarrow x=0\)

1. \(\sqrt{x^2+5x+20}=4\)

\(\Leftrightarrow\left(\sqrt{x^2+5x+20}\right)^2=4^2\)

\(\Leftrightarrow x^2+5x+20=16\)

\(\Leftrightarrow x^2+5x+20-16=0\)

\(\Leftrightarrow x^2+5x+4=0\)

\(\Leftrightarrow x^2+4x+x+4=0\)

\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\x=-1\end{cases}}}\)

10 tháng 8 2016

3xbình =(x+2) bình => 3x bình = x bìn+ 4 x +4 => 2x bình - 4x -4 =0 => 2. (x bình - 2x -1)=0

15 tháng 10 2017

2. \(\sqrt{x^2+6x+9}=3x-6\)

\(\sqrt{\left(x-3\right)^2}=3x-6\)

\(x-3=3x-6\)

\(x-3-3x+6=0\)

\(-2x+9=0\)

\(-2x=-9\)

\(x=\frac{9}{2}\)

3. \(\sqrt{x^2-4x+4}-2x+5=0\)

\(\sqrt{\left(x-2\right)^2}-2x+5=0\)

\(x-2-2x+5=0\)

\(-x+3=0\)

\(x=3\)

16 tháng 8 2017

Hép mi nha

16 tháng 8 2017

1)\(x^2-3x+1+\sqrt{2x-1}=0\)

ĐK:\(x\ge\frac{1}{2}\)

\(\Leftrightarrow x^2-3x+2+\sqrt{2x-1}-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2x-1-1}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)

\(\Leftrightarrow\left(x-1\right)\left(\left(x-2\right)+\frac{2}{\sqrt{2x-1}+1}\right)=0\)

Suy ra x=1 và pt trong ngoặc chuyển vế bình phương lên đưuọc \(x=-\sqrt{2}+2\)

2)\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\) (bình phương luôn cũng được nhưng cơ bản là mình ko thích :| )

\(pt\Leftrightarrow\sqrt{x^2-2x+3}=\frac{x^2+1}{x+1}\)

\(\Leftrightarrow\sqrt{x^2-2x+3}-2=\frac{x^2+1}{x+1}-2\)

\(\Leftrightarrow\frac{x^2-2x+3-4}{\sqrt{x^2-2x+3}+2}=\frac{x^2-2x-1}{x+1}\)

\(\Leftrightarrow\frac{x^2-2x-1}{\sqrt{x^2-2x+3}+2}-\frac{x^2-2x-1}{x+1}=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(\frac{1}{\sqrt{x^2-2x+3}+2}-\frac{1}{x+1}\right)=0\)

Pt \(\frac{1}{\sqrt{x^2-2x+3}+2}=\frac{1}{x+1}\Leftrightarrow\sqrt{x^2-2x+3}=x-1\)

\(\Leftrightarrow x^2-2x+3=x^2-2x+1\Leftrightarrow3=1\) (loại)

\(\Rightarrow x^2-2x-1=0\Rightarrow x=\frac{2\pm\sqrt{8}}{2}\)

19 tháng 8 2017

\(13\sqrt{x-1}+9\sqrt{x+1}=6\)

Điều kiện: \(\hept{\begin{cases}x-1\ge0\\x+1\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge-1\end{cases}}\)

\(\Leftrightarrow x\ge1\)

Đặt \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{x+1}=b\end{cases}}\) thì ta có hệ

\(\hept{\begin{cases}13a+9b=6\\b^2-a^2=2\end{cases}}\)

Rút cái thứ 2 thế vô cai thứ nhất rồi làm tiếp là ra. Phần còn lại đơn giản tự làm nhé