K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

* Ta có : 

\(P=\frac{3a-2017}{2a-1}+\frac{a+2018}{2a-1}\)

\(P=\frac{3a-2017+a+2018}{2a-1}\)

\(P=\frac{4a+1}{2a-1}=\frac{4a-2+3}{2a-1}=\frac{4a-2}{2a-1}+\frac{3}{2a-1}=\frac{2\left(2a-1\right)}{2a-1}+\frac{3}{2a-1}=2+\frac{3}{2a-1}\)

Để P là số nguyên thì \(\frac{3}{2a-1}\) phải là số nguyên hay \(3⋮\left(2a-1\right)\)\(\Rightarrow\)\(\left(2a-1\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(2a-1\)\(1\)\(-1\)\(3\)\(-3\)
\(a\)\(1\)\(0\)\(2\)\(-1\)

Vậy \(a\in\left\{-1;0;1;2\right\}\) thì P là số nguyên 

Chúc bạn học tốt ~ 

12 tháng 4 2018

\(P=\frac{3a-2017}{2a-1}+\frac{a+2018}{2a-1}\)

\(P=\frac{3a-2017+a+2018}{2a-1}\)

\(P=\frac{4a+1}{2a-1}\)

để \(P\in Z\) thì \(a\in Z\) 

DD
2 tháng 4 2021

Đặt \(d=\left(x+1,2021x+2020\right)\).

Suy ra 

\(\hept{\begin{cases}x+1⋮d\\2021x+2020⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2021x+2021⋮d\\2021x+2020⋮d\end{cases}}\Rightarrow\left(2021x+2021\right)-\left(2021x+2020\right)=1⋮d\)

suy ra \(d=1\).

Suy ra đpcm.