\(Cho\)\(P=\frac{3a-2017}{2a-1}+\frac{a+2018}{2a-1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

* Ta có : 

\(P=\frac{3a-2017}{2a-1}+\frac{a+2018}{2a-1}\)

\(P=\frac{3a-2017+a+2018}{2a-1}\)

\(P=\frac{4a+1}{2a-1}=\frac{4a-2+3}{2a-1}=\frac{4a-2}{2a-1}+\frac{3}{2a-1}=\frac{2\left(2a-1\right)}{2a-1}+\frac{3}{2a-1}=2+\frac{3}{2a-1}\)

Để P là số nguyên thì \(\frac{3}{2a-1}\) phải là số nguyên hay \(3⋮\left(2a-1\right)\)\(\Rightarrow\)\(\left(2a-1\right)\inƯ\left(3\right)\)

Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)

Suy ra : 

\(2a-1\)\(1\)\(-1\)\(3\)\(-3\)
\(a\)\(1\)\(0\)\(2\)\(-1\)

Vậy \(a\in\left\{-1;0;1;2\right\}\) thì P là số nguyên 

Chúc bạn học tốt ~ 

12 tháng 4 2018

\(P=\frac{3a-2017}{2a-1}+\frac{a+2018}{2a-1}\)

\(P=\frac{3a-2017+a+2018}{2a-1}\)

\(P=\frac{4a+1}{2a-1}\)

để \(P\in Z\) thì \(a\in Z\) 

3 tháng 8 2016

a)

\(A=\frac{x}{y}\Leftrightarrow n-2\ne0\Leftrightarrow n\ne2\)

b)

A là số nguyên khi \(n-2\inƯ_{-5}\)

\(\Rightarrow n-2\in\left\{1;5;-1;-5\right\}\)

\(\Rightarrow n\in\left\{3;8;1;-3\right\}\)

Vậy \(n\in\left\{3;8;1;-3\right\}\)

3 tháng 8 2016

Đặt BT là B

\(\Rightarrow B=3\left(1+3^2+3^2+3^3\right)+.......+3^{97}\left(1+3+3^2+3^3\right)\)

\(\Rightarrow B=3.40+....+3^{97}.40\) chia hết cho 40

=> B chia hết cho 40

14 tháng 7 2018

câu a

Gọi ƯCLN (12n+1,30n+2) là d

⇒(12n+1)⋮d

(30n+2)⋮d

⇒5(12n+1)−2(30n+2)⋮d

⇒60n+5−60n−4⋮d

⇒1⋮dd=1

Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản 

21 tháng 4 2020

1, để B nguyên

=> n + 7 ⋮ 3n - 1

=> 3n + 21 ⋮ 3n - 1

=> 3n - 1 + 22 ⋮ 3n - 1

=> 22 ⋮ 3n - 1

2, tương tự thôi bạn

29 tháng 4 2020

CẢM ƠN , HIC

12 tháng 8 2016

ta có : 1/y = x/4 - 1/2 = ( x+2)/4 <=> y = 4/(x - 2)

Để x, y nguyên nên ta có : x-2 ϵ Ư(4) = { -1 , 1 ,-2,2-4,4}

x-2=1=>x=3=>y=4

x-2=-1=>x=1=>y=-4

x-2=-2=>x=0=>y=0

x-2=2=>x=4=>y=2

x-2=-4=>x=-2=>y=-1

x-2=4=>x=6=>y=1

vay cac cap so nguyen( x,y) la :(3,4),(1,-4),(0,0),(4,2),(-2,-1),(6,1)

x4

 

12

1 

 

12 tháng 5 2016

Ta có: n+2 chia hêys cho n+ 2 : n +2 chia hết cho n + 5

 \(\Rightarrow\)n +2 +5 chia hết cho n+2

\(\Rightarrow\)5 chia hết cho n + 2

\(\Rightarrow\)n + 2 \(\in\) Ư\(\left(5\right)\)= [+-1;+-5]

\(\Rightarrow\)Nêú n + 2 = -1 \(\Rightarrow\) n = -3

Nếu n + 2 = 1\(\Rightarrow\)n = -1

Nếu n + 2 = 5 \(\Rightarrow\) n = 3

Nếu n + 2 = -5 \(\Rightarrow\) n = -7

Vậy n = [-3; -1; 3; -7]

12 tháng 5 2016

bài này từ kì I rồi mà

11 tháng 5 2016

Hướng làm thôi nhé.

a) 2n+2 với 2n+3 là 2 số nguyên tố cùng nhau => n+1 cũng nguyên tố cùng nhau với 2n+3

b) Do 2n+3 và 2n+4 là số nguyên tố cùng nhau và 2n+3 không chia hết cho 2 nên 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau

12 tháng 5 2016

Nguyễn Như Nam ơi thật ra tớ chẳng hiểu cậu nói gì

 

25 tháng 6 2015

2. Gọi d là ước chung của ( n+1) và ( n+2 )

Ta cso: ( n+1 )  chia hết cho d và ( n+2 ) chia hết cho d => ( n+2 ) - ( n+1 ) chia hết cho d hay 1 chia hết cho d

=> d=-1 và 1 => tử và mẫu của phân số \(\frac{n+1}{n+2}\) chỉ cso ước chung là 1 và -1 => phân số \(\frac{n+1}{n+2}\) là phân sô tối giản

Nếu thấy 2 bài mình làm đúng thì baasm đúng cho mình nhak

17 tháng 1 2018

Gọi ƯCLN(2n+3.4n+8) là d (d E N)

Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d

          4n+8 chia hết cho d

=> 4n+8-(4n+6) chia hết cho d

=> 4n+8-4n-6 chia hết cho d

=> 2 chia hết cho d

=> d E {1;2}

Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1

=> ƯCLN(2n+3,4n+8)=1

Vậy phân số \(\frac{2n+3}{4n+8}\)  là phân số tối giảm (đpcm)

17 tháng 1 2018

Gọi ƯCLN(2n+3.4n+8) là d (d E N)
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
          4n+8 chia hết cho d
=> 4n+8-(4n+6) chia hết cho d
=> 4n+8-4n-6 chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1
=> ƯCLN(2n+3,4n+8)=1
Vậy phân số \(\frac{2n+3}{4n+8}\)  là phân số tối giảm (đpcm)

:D