Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* Ta có :
\(P=\frac{3a-2017}{2a-1}+\frac{a+2018}{2a-1}\)
\(P=\frac{3a-2017+a+2018}{2a-1}\)
\(P=\frac{4a+1}{2a-1}=\frac{4a-2+3}{2a-1}=\frac{4a-2}{2a-1}+\frac{3}{2a-1}=\frac{2\left(2a-1\right)}{2a-1}+\frac{3}{2a-1}=2+\frac{3}{2a-1}\)
Để P là số nguyên thì \(\frac{3}{2a-1}\) phải là số nguyên hay \(3⋮\left(2a-1\right)\)\(\Rightarrow\)\(\left(2a-1\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
\(2a-1\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(a\) | \(1\) | \(0\) | \(2\) | \(-1\) |
Vậy \(a\in\left\{-1;0;1;2\right\}\) thì P là số nguyên
Chúc bạn học tốt ~
câu a
Gọi ƯCLN (12n+1,30n+2) là d
⇒(12n+1)⋮d
(30n+2)⋮d
⇒5(12n+1)−2(30n+2)⋮d
⇒60n+5−60n−4⋮d
⇒1⋮d⇔d=1
Vậy ƯCLN (12n+1,30n+2)=1⇔12n+1/30n+2 là p/s tối giản
\(A=\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2014}}\)
\(3A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\)
\(3A-A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2013}}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^{2014}}\right)\)
\(2A=\frac{1}{3}-\frac{1}{3^{2014}}\)
\(A=\frac{\frac{1}{3}-\frac{1}{3^{2014}}}{2}\)
Hướng làm thôi nhé.
a) 2n+2 với 2n+3 là 2 số nguyên tố cùng nhau => n+1 cũng nguyên tố cùng nhau với 2n+3
b) Do 2n+3 và 2n+4 là số nguyên tố cùng nhau và 2n+3 không chia hết cho 2 nên 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau
Nhân xét biểu thức A, ta thấy:
\(\frac{9999999999}{2}>\frac{9999999999}{3}>\frac{9999999999}{6}>0\)
=> \(A>0\left(đpcm\right)\)
ta có 9999999999/2=9999999999*3/2*3
9999999999/3=9999999999*2/3*2
suy ra 9999999999*3/2*3 - 9999999999*2/3*2=9999999999*3-9999999999*2/6=9999999999/6
suy ra A=9999999999/6-9999999999/6=0
vậy A=0
a)
\(A=\frac{x}{y}\Leftrightarrow n-2\ne0\Leftrightarrow n\ne2\)
b)
A là số nguyên khi \(n-2\inƯ_{-5}\)
\(\Rightarrow n-2\in\left\{1;5;-1;-5\right\}\)
\(\Rightarrow n\in\left\{3;8;1;-3\right\}\)
Vậy \(n\in\left\{3;8;1;-3\right\}\)
Đặt BT là B
\(\Rightarrow B=3\left(1+3^2+3^2+3^3\right)+.......+3^{97}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow B=3.40+....+3^{97}.40\) chia hết cho 40
=> B chia hết cho 40