K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
HL
3
7 tháng 8 2017
Ta có:
\(\left(x+y\right)=\left(x+y+z\right)^2\left(x+y\right)\)
\(\ge4\left(x+y\right)^2z\ge16xyz\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\end{cases}}\)
Nếu x+y+z=1 sẽ đúng hơn
Với x,y là số dương bạn dễ dàng chứng minh: (x+y)2 \(\ge\) 4xy
Tương tự vậy, ta có : (x+y+z)2 =[(x+y)+z]2 \(\ge\) 4(x+y)z
\(\Rightarrow\) 1 \(\ge\) 4(x+y)z (x+y+z=1)
\(\Rightarrow\) x+y \(\ge\) 4(x+y)2 z
Mà (x+y)2 \(\ge\) 4xy (cmt)
\(\Rightarrow\) x+y \(\ge\) 4.4xyz \(\ge\) 16xyz
Dấu "=" xảy ra khi x+y+z=1 , x+y=z và x=y
\(\Leftrightarrow\) x+y = z = \(\frac{1}{2}\) và x=y
\(\Leftrightarrow\) x=y=\(\frac{1}{4}\) và z=\(\frac{1}{2}\)
cho x + y+ z = 1 hay x + y - z = 1 vaayj ??