K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

Nếu x+y+z=1 sẽ đúng hơn

Với x,y là số dương bạn dễ dàng chứng minh: (x+y)2 \(\ge\) 4xy

Tương tự vậy, ta có : (x+y+z)2 =[(x+y)+z]2 \(\ge\)  4(x+y)z

\(\Rightarrow\) 1 \(\ge\) 4(x+y)z (x+y+z=1)

\(\Rightarrow\) x+y \(\ge\) 4(x+y)z

Mà (x+y)2 \(\ge\)  4xy (cmt)

\(\Rightarrow\) x+y \(\ge\) 4.4xyz \(\ge\) 16xyz

Dấu "=" xảy ra khi x+y+z=1 , x+y=z và x=y

\(\Leftrightarrow\) x+y = z = \(\frac{1}{2}\) và x=y

\(\Leftrightarrow\) x=y=\(\frac{1}{4}\) và z=\(\frac{1}{2}\)

13 tháng 2 2016

cho x + y+ z = 1 hay x + y - z  = 1 vaayj ?? 

7 tháng 8 2017

Ta có:

\(\left(x+y\right)=\left(x+y+z\right)^2\left(x+y\right)\)

\(\ge4\left(x+y\right)^2z\ge16xyz\)

Dấu = xảy ra khi \(\hept{\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\end{cases}}\)

7 tháng 8 2017

là sao alibaba nguyễn mk ko hiểu

26 tháng 1 2017

Đề sai tùm lum hết. Sửa đề đi b

27 tháng 1 2017

lời​ giải có trước sau đó đổi đề cho phù hợp với lời giải