Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì (P) có trục đối xứng x = 1 => \(-\dfrac{b}{2a}=1\left(1\right)\)
Vì (P) đi qua A(2; 3) => với x = 2 thì y = 3 => 4a + 2b + c = 3 (2)
Vì (P0 cắt trục tung tại điểm có tung độ bằng 3 => Với x = 0 thì y = 3 => c = 3 (3)
Từ (1), (2), (3) ta có:
\(\left\{{}\begin{matrix}-\dfrac{b}{2a}=1\\4a+2b+c=3\\c=3\end{matrix}\right.\) => ...
=> xem lại đề @@
\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)
\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)
Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)
\(a^2-b^2=3^2-2^2=5\).
Từ đề bài ta có:
a/ \(\left\{{}\begin{matrix}0.a+0.b+c=0\\a+b+c=1\\a-b+c=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=2\\c=0\end{matrix}\right.\) \(\Rightarrow y=-x^2+2x\)
b/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=8\\0.a+0.b+c=-6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=5\\c=-6\end{matrix}\right.\)
c/ \(\left\{{}\begin{matrix}0.a+0.b+c=5\\-\frac{b}{2a}=3\\\frac{b^2-4ac}{4a}=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=-6\\c=5\end{matrix}\right.\)
d/ \(\left\{{}\begin{matrix}a+b+c=0\\4a+2b+c=0\\-\frac{b}{2a}=\frac{3}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=k\\b=-3k\\c=2k\end{matrix}\right.\) với k là số thực khác 0 bất kì
\(\Leftrightarrow\left\{{}\begin{matrix}4a+c=2\\-\dfrac{b}{2a}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=2-4a=2-4\cdot\left(-1\right)=6\\a=-1\end{matrix}\right.\)
Theo đề, ta có:
\(\left\{{}\begin{matrix}\dfrac{-6}{2a}=-4\\\left|x_2-x_1\right|=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{3}{4}\\\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{3}{4}x^2+6x-c=0\\\sqrt{\left(-6:\dfrac{3}{4}\right)^2-4\cdot\dfrac{-c}{\dfrac{3}{4}}}=4\end{matrix}\right.\)
=>căn 64+16/3c=4
=>16/3c+64=16
=>16/3c=-48
=>c=-9