
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=2.\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+...+\dfrac{1}{95.98}\right)\)
\(A=\dfrac{2}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+....+\dfrac{3}{95.98}\right)\)
\(A=\dfrac{2}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(A=\dfrac{2}{3}\dfrac{24}{49}=\dfrac{16}{49}\)
Ta có: A=\(\dfrac{2}{2.5}+\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}\)
\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}\right)\)\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(\Rightarrow A=\dfrac{3}{2}.\left(\dfrac{49}{98}-\dfrac{1}{98}\right)\)
\(\Rightarrow A=\dfrac{3}{2}.\dfrac{48}{98}\)
\(\Rightarrow A=\dfrac{3.2.2.12}{2.2.49}\)
\(\Rightarrow A=\dfrac{36}{49}\)

Olm chào em, cảm ơn đánh giá của em về chất lượng bài giảng của Olm, cảm ơn em đã đồng hành cùng Olm trên hành trình tri thức. Chúc em học tập hiệu quả và vui vẻ cùng Olm em nhé!

Câu hỏi của ho thi mai linh - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của Đinh Bảo Châu Thi - Toán lớp 6 - Học toán với OnlineMath
Câu hỏi của linh - Toán lớp 6 - Học toán với OnlineMath

Ta có:
2115 = (3.7)15 = 315.715
275.498 = (33)5.(72)8 = 315.716
Vì 315.715 < 315.716
=> 2115 < 275.498

\(8^x+2^{3x+1}=24\)
\(\left(2^3\right)^x+2^{3x}.2=24\)
\(2^{3x}+2^{3x}.2=24\)
\(2^{3x}.\left(1+2\right)=24\)
\(2^{3x}.3=24\)
\(2^{3x}=24:3\)
\(2^{3x}=8\)
\(\Rightarrow2^{3x}=2^3\)
\(\Rightarrow3x=3\)
\(x=3:3\)
\(x=1\)
Vậy \(x=1\)

Ta có: \(1+2+3+...+n=\frac{n.\left(n+1\right)}{2}\)
\(Q=\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+10}\)
\(Q=\frac{1}{\frac{2.\left(2+1\right)}{2}}+\frac{1}{\frac{3.\left(3+1\right)}{2}}+....+\frac{1}{\frac{10.\left(10+1\right)}{2}}\)
\(Q=\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+....+\frac{1}{\frac{10.11}{2}}\)
\(Q=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{10.11}\)
\(\frac{1}{2}Q=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{10.11}\)
\(\frac{1}{2}Q=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}=\frac{1}{2}-\frac{1}{11}=\frac{9}{22}\)
=>\(Q=\frac{9}{22}.2=\frac{9}{11}\)
\(Q=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{55}\\ \Rightarrow\frac{1}{2}Q=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}\)
Tiếp theo tự tính nhé
ok gì
OK CAI CC