Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
+ Giả sử rằng cả M và N là các cực đại giao thoa (hoặc cực tiểu không ảnh hưởng đến kết quả bài toán). Khi đó ta có:
MA - MB = kλ = 100 NA - NB = ( k + 5 ) λ = 30 ⇒ 5 λ = 20 ⇒ λ = 4 mm .
+ Từ phương trình sóng, ta có ω = 100 π rad / s ⇒ T = 0 , 02 s .
=> Vận tốc truyền sóng v = λ/T = 4/0,02 = 200 mm/s = 20 cm/s.
Tại P dao động cực đại khi \(d_{2}-d_{1}=(k+\frac{\triangle \phi}{2\pi})\lambda.\)
Tại M là vân lồi bậc k và tại N là vân lồi bậc k + 3 =>\(MA-MB=(k+0.5)\lambda=12.25\\ NA-NB=(k+3+0.5)\lambda=33.25\\ \)
\(\Rightarrow 3\lambda=33.25-12.25=21 \Rightarrow \lambda=7mm.\)
Số điểm cực đại giao thoa trên đoạn AB là \(-AB\leq (k+\frac{1}{2})\lambda\leq AB \Rightarrow \frac{-AB}{\lambda}-0.5 \leq k \leq \frac{AB}{\lambda}\)
=> có 14 điểm cực đại giao thoa kể cả A và B.
Đáp án B
+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì:
d 1 - d 2 = ( k + 1 2 ) λ
+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số d1 – d2:
AM - 2 AM ≤ d 1 - d 2 ≤ AB
+ Kết hợp hai phương trình trên ta thu được:
AM ( 1 - 2 ) λ - 1 2 ≤ k ≤ A B λ - 1 2
→ - 6 , 02 ≤ k ≤ 12 , 8
Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.
Đáp án C
+ Bước sóng của sóng trên:
+ Dựa vào định lí Pytago ta tính nhanh được:
+ Hiệu đường đi của sóng tại B:
+ Hiệu đường đi của sóng tại M:
+ Hai nguồn dao động ngược pha nên số cực đại trên BM thỏa mãn:
Có 19 giá trị k thỏa mãn nên có 19 cực đại trên BM
Đáp án C
+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì
d 1 - d 2 = ( k + 1 2 ) λ
+ Từ hình vẽ ta thấy khoảng giá trị của hiệu số
+ Kết hợp hai phương trình trên ta thu được
Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM
Đáp án C
+ Gọi H là một điểm bất kì nằm trên BM. Tương tự, để H cực đại thì:
d 1 - d 2 = ( k + 1 2 ) λ
Vậy sẽ có 19 điểm dao động với biên độ cực đại trên đoạn BM.
$\lambda = \dfrac{3}{2}$
Vị trí cực đại thoả mãn: $(20-20\sqrt {2} \le (k+0,5)\lambda \le 20 \Rightarrow $ số $k=19$
Vậy có 19 điểm dao động biên độ cực đại trên đoạn AD.
Đáp án B
+ M và N cùng loại do vậy ta luôn có hiệu số:
∆ d N - ∆ d M = 2 λ ⇒ λ = 3 cm.
+Xét tỉ số S 1 P - S 2 P λ = - 6 , 9 có 13 điểm cực đại trên PQ