\(^{^{x^{2018}}-2019x^{2017}+2019x^{2016}+...+2019x^2+2019x+2018}\)

tính N(20...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2018

Thay x = 2018 vào \(A=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x-1\) ta được 

\(2018^{2018}-2019.2018^{2017}+2019.2018^{2016}-2019.2018^{2015}+...+2019.2018^2-2019.2018-1\)

\(=\)\(2018^{2018}-2019\left(2018^{2017}-2018^{2016}+2018^{2015}-...-2018^2+2018\right)-1\)

Đặt \(B=2018^{2017}-2018^{2016}+2018^{2015}-...-2018^2+2018\)

\(2018B=2018^{2018}-2018^{2017}+2018^{2016}-...-2018^3+2018^2\)

\(2018B+B=\left(2018^{2018}-2018^{2017}+...+2018^2\right)+\left(2018^{2017}-2018^{2016}+...+2018\right)\)

\(2019B=2018^{2018}-2018\)

\(B=\frac{2018^{2018}-2018}{2019}\)

\(\Rightarrow\)\(A=2018^{2018}-2019.B-1\)

\(\Rightarrow\)\(A=2018^{2018}-\frac{2019\left(2018^{2018}-2018\right)}{2019}-1\)

\(\Rightarrow\)\(A=2018^{2018}-\left(2018^{2018}-2018\right)-1\)

\(\Rightarrow\)\(A=2018^{2018}-2018^{2018}+2018-1\)

\(\Rightarrow\)\(A=2018-1\)

\(\Rightarrow\)\(A=2017\)

Vậy giá trị của \(A=2017\) tại \(x=2018\)

Chúc bạn học tốt ~ 

9 tháng 4 2018

\(E\left(x\right)=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)

\(E\left(2018\right)\) nên :

\(\Rightarrow E\left(x\right)=2018^{2018}-2019.2018^{2017}+2019.2018^{2016}-2019.2018^{2015}+...+2019.2018^2-2019.2018+1\)

Tới đoạn này thì ghi dấu "=" rồi tính và làm tương tự

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải

Ta có:

\(E(x)=x^{2018}-2019x^{2017}+2019x^{2016}-2019x^{2015}+...+2019x^2-2019x+1\)

\(E(x)=(x^{2018}-2018x^{2017})-(x^{2017}-2018x^{2016})+(x^{2016}-2018x^{2015})-....+(x^2-2018x)-x+1\)

\(E(x)=x^{2017}(x-2018)-x^{2016}(x-2018)+x^{2015}(x-8)-...+x(x-2018)-x+1\)

\(E(x)=(x-2018)(x^{2017}-x^{2016}+x^{2015}-...+x)-x+1\)

Suy ra \(E(2018)=-2018+1=-2017\)

15 tháng 5 2020

Vào Tkhđ của mik xem có ảnh ko nhé !

15 tháng 5 2020

https://m.imgur.com/a/o7Vo0kL

 CHịu khó gõ link.onl đt bèn làm ntnày thôi nha

Ảnh trên không hiện rồi nhé !

6 tháng 2 2019

Khi x=2018 thì

P=\(2018^{2016}-2019.2018^{2015}+2019.2018^{2014}-...-2019.2018+2020\)

=\(2018^{2016}-\left(2018+1\right).2018^{2015}+\left(2018+1\right)\\ .2018^{2014}-...-\left(2018+1\right)2018+2020\)

=\(2018^{2016}-2018^{2016}-2018^{2015}+2018^{2015}+\\ 2018^{2014}-...-2018^2-2018+2020\)

=2

6 tháng 6 2018

Ta có 2019=2018+1=x+1

Thay 2019=x+1 vào đa thức P(x) ta có :

\(P\left(x\right)=x^{10}-\left(x+1\right)x^9+\left(x+1\right)x^8-.......+\left(x+1\right)\)

\(P\left(x\right)=x^{10}-x^{10}-x^9+x^9+x^8-.......+x+1\)

\(P\left(x\right)=\left(x^{10}-x^{10}\right)-\left(x^9-x^9\right)+\left(x^8-x^8\right)-....+x+1\)

\(P\left(x\right)=x+1=2018+1=2019\)

1 tháng 5 2019

Theo đề bài ta có 2019=2018+1=x+1

Thay 2019=x+1 vào đa thức P(x) ta có :

P(x)=x10−(x+1)x9+(x+1)x8−.......+(x+1)P(x)=x10−(x+1)x9+(x+1)x8−.......+(x+1)

P(x)=x10−x10−x9+x9+x8−.......+x+1P(x)=x10−x10−x9+x9+x8−.......+x+1

P(x)=(x10−x10)−(x9−x9)+(x8−x8)−....+x+1P(x)=(x10−x10)−(x9−x9)+(x8−x8)−....+x+1

P(x)=x+1=2018+1=2019

28 tháng 12 2019

ta có: x = 2018 => 2019 = x + 1. Do đó:

\(C=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...+\left(x+1\right)x-1.\)

\(=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}-x^{12}+...+x^2+x-1.\)

\(=x-1=2019-1=2018\)

Vậy C = 2018 với x = 2018.

Học tốt nhé ^3^

28 tháng 12 2019

\(Ta \)  \(có :\)

\(x = 2018\)\(\Leftrightarrow\)\(x + 1 = 2019\)

\(Thay \)  \(x + 1 = 2019\)\(vào \)  \(C , ta \)  \(được :\)

\(C = x\)\(15\)\(- ( x + 1 ).x\)\(14\)\(+ ( x + 1 ).x\)\(13\) \(- ( x + 1 ).x\)\(12\) \(+ ...+ ( x + 1 ).x - 1\)

\(C = x\)\(15\)\(- x\)\(15\)\(- x\)\(14\) \(+ x\)\(14\) \(+ x\)\(13\)\(- x\)\(13\)\(- x\)\(12\)\(+ ... + x^2 + x - 1\)

\(C = x - 1\)

\(Thay \)  \(x = 2018\)  \(vào \)  \(C\) \(, ta \)  \(được :\)

\(C = 2018 - 1 = 2017\)