\(x-\sqrt{x}+1\)tìm GTNN của N

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

Ta có: 

\(N=x-\sqrt{x}+1\)

\(N=\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}\)

\(N=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\forall x\ge0\right)\)

Dấu "=" xảy ra khi: \(\left(\sqrt{x}-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{4}\)

Vậy Min(N) = 3/4 khi x = 1/4

26 tháng 10 2020

ĐKXĐ : x lớn hơn hoặc bằng 0

\(N=x-\sqrt{x}+1=x-2.\sqrt{x}.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}-\frac{1}{2}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x=\frac{1}{4}\end{cases}\Leftrightarrow}x=\frac{1}{4}}\)

Vậy ........

30 tháng 7 2021

xin lỗi 

mình không làm được

30 tháng 7 2021

a, 67/57

b,Q =678/78 n/t

c, s = a+h

26 tháng 6 2016

a) ĐK: -1 <= x <= 2

Ta thấy \(M\ge0\)với mọi x thỏa mãn ĐK.

\(M^2=2-x+2\sqrt{2-x}\sqrt{1+x}+1-x=3+2\sqrt{2-x}\sqrt{1+x}\)

Vì M>0 nên M min khi M2 min khi \(2\sqrt{2-x}\sqrt{1+x}\)min = 0. Khi đó x = -1 hoặc x = 2 và GTNN của M \(=\sqrt{3}\)

Mặt khác theo Bunhiakopxki thì: \(\sqrt{2-x}+\sqrt{1+x}\le\sqrt{\left(1^2+1^2\right)\left(2-x+1+x\right)}=\sqrt{6}\)nên GTLN của M \(=\sqrt{6}\)khi \(\sqrt{2-x}=\sqrt{1+x}\Leftrightarrow x=\frac{1}{2}\)

KL: GTNN của M \(=\sqrt{3}\)khi x = -1 hoặc 2

GTLN của M \(=\sqrt{6}\)khi x = 1/2.

b) Tương tự, 

GTNN của N \(=\sqrt{2}\)khi x = 2 hoặc 4

GTLN của N = 2 khi x = 3.