Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nghĩ với pt tổng quát: \(ax^2+bx+c=0\) có \(\Delta=b^2-4ac\)
Nếu như vậy thì: \(1.x^2+6x+m\) có \(\Delta=6^2-4m\)chứ?
Riêng mình thì bài này mình dùng delta phẩy cho lẹ:
Lời giải
Để pt \(x^2+6x+m=0\) có 2 nghiệm phân biệt thì:
\(\Delta'=\left(\frac{b}{2}\right)^2-ac=3^2-m>0\)
\(\Leftrightarrow m< 9\)
Làm như vậy không ổn lắm bởi vì còn phải xét trường hợp \(x=0\)và \(x< 0\)nữa, rất mất thời gian. Bạn cứ làm theo cách thông thường đưa về phương trình tích là được rồi.
a) \(\frac{\sqrt{2x^3}}{\sqrt{8x}}=\sqrt{\frac{2x^3}{8x}}=\frac{1}{2}x\)
b) \(\left(3-\sqrt{5}\right)\left(x+\sqrt{5}\right)=3^2-\left(\sqrt{5}\right)^2=9-5=4\)
c) \(\sqrt{\frac{3x^2y^4}{27}}=0\)
\(y\ne0\)
Thì \(\sqrt{\frac{3x^2y^4}{27}}=\frac{1}{3}xy^2\)
e) \(\frac{y}{x^2}\sqrt{\frac{36x^4}{y^2}}=\frac{y}{x^2}.\frac{6x^2}{\left|y\right|}=\frac{6y}{\left|y\right|}\)
Vì y < 0 nên \(\left|y\right|=-y\)
Vậy \(\frac{6y}{\left|y\right|}=\frac{6y}{-y}=-6\)
f) \(\frac{\sqrt{99999999}}{\sqrt{11111111}}=\sqrt{\frac{99999999}{11111111}}=\sqrt{9}=3\)
P/s: lần sau đăng hẳn câu hỏi lên đừng có kiểu đăng như thế này, không ai muốn làm đâu
Bài này sai ngay từ đầu rồi-.-
Bài làm:
Ta có: \(x^2+\frac{1}{x^2}=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2\cdot x\cdot\frac{1}{x}=7\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)^2-2=7\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\)
\(\Rightarrow x+\frac{1}{x}=3\left(x>0\right)\)
Bây giờ thì dùng tam giác Pascal mà khai triển ra thôi
\(\left(x+\frac{1}{x}\right)^5=x^5+5x^4\cdot\frac{1}{x}+10x^3\cdot\frac{1}{x^2}+10x^2\cdot\frac{1}{x^3}+5x\cdot\frac{1}{x^4}+\frac{1}{x^5}\)
\(=x^5+5x^3+10x+\frac{10}{x}+\frac{5}{x^3}+\frac{1}{x^5}=\left(x^5+\frac{1}{x^5}\right)+5\left(x^3+\frac{1}{x^3}\right)+10\left(x+\frac{1}{x}\right)\)
\(\Rightarrow x^5+\frac{1}{x^5}=\left(x+\frac{1}{x}\right)^5-5\left(x^3+\frac{1}{x^3}\right)-10\left(x+\frac{1}{x}\right)\)
\(=3^5-5\left(x+\frac{1}{x}\right)\left(x^2-x\cdot\frac{1}{x}+\frac{1}{x^2}\right)-10\cdot3\)
\(=243-5\cdot3\cdot\left(7-1\right)-30=123\)
Vậy \(x^5+\frac{1}{x^5}=123\)
Bài 1)
PT tương đương \((x^2+2y^2)^2=y^2-6y+16=(y-3)^2+7\)
\(\Leftrightarrow (x^2+2y^2-y+3)(x^2+2y^2+y-3)=7\)
Ta thấy \(x^2+2y^2-y+3=x^2+y^2+(y-\frac{1}{2})^2+\frac{11}{4}>2\)
Do đó \(\left\{\begin{matrix}x^2+2y^2-y+3=7\\x^2+2y^2+y-3=1\end{matrix}\right.\Rightarrow6-2y=6\Rightarrow y=0\)
\(\Rightarrow x^2=4\Rightarrow x=\pm 2\)
Vậy \((x,y)=(2,0),(-2,0)\)
Bài 2)
PT tương đương \(5x^2+x(5y-7)+(5y^2+14y)=0\)
Để phương trình có nghiệm thì \(\Delta =(5y-7)^2-20(5y^2+14y)\geq 0\)
\(\Leftrightarrow -75y^2-350y+49\geq 0\)
Giải BPT trên thu được \(\frac{-35-14\sqrt{7}}{15}\leq y\leq \frac{-35+14\sqrt{7}}{15}\)
\(\Rightarrow -4\le y\le 0\). Do đó \(y\in \left\{-4,-3,-2,-1,0\right\}\)
Kết hợp với \(\Delta\) là số chính phương nên \(y=-1,0\) tương ứng với \(x=3,x=0\)
Vậy \((x,y)=(3,-1),(0,0)\)
Câu 3)
Ta có \(A=\frac{x}{z}+\frac{z}{y}+3y=\frac{x}{z}+\frac{z}{y}+y(x+y+z)\)
Áp dụng bất đẳng thức AM-GM:
\(\left\{\begin{matrix} \frac{z}{y}+yz\geq 2z\\ z\leq y\Rightarrow \frac{x}{z}+xy\geq\frac{x}{y}+xy\geq 2x \end{matrix}\right.\)
\(\Rightarrow A\geq 2(x+z)+y^2=2(3-y)+y^2=(y-1)^2+5\geq 5\)
Do đó ta có đpcm
Dấu bằng xảy ra khi \(x=y=z=1\)
ĐKXĐ: \(x\ge0;x\ne1\)
\(A=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\frac{\left(\sqrt{x}-1\right)^2\left(\sqrt{x}+1\right)^2}{2}=-\sqrt{x}\left(\sqrt{x}-1\right)\)
\(=\sqrt{x}\left(1-\sqrt{x}\right)\)
\(0< x< 1\Rightarrow\left\{{}\begin{matrix}\sqrt{x}>0\\1-\sqrt{x}>0\end{matrix}\right.\) \(\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\Rightarrow A>0\)
\(A< 0\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)< 0\Leftrightarrow1-\sqrt{x}< 0\Rightarrow x>1\)
\(A>-2\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)+2>0\Leftrightarrow-x+\sqrt{x}+2>0\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(2-\sqrt{x}\right)>0\Leftrightarrow2-\sqrt{x}>0\Rightarrow x< 4\)
Kết hợp ĐKXĐ \(\Rightarrow\left\{{}\begin{matrix}0\le x< 4\\x\ne1\end{matrix}\right.\)
\(A< -2x\Leftrightarrow\sqrt{x}-x< -2x\Leftrightarrow x+\sqrt{x}< 0\) (vô nghiệm \(\forall x\ge0\))
\(A>2\sqrt{x}\Leftrightarrow\sqrt{x}-x>2\sqrt{x}\Leftrightarrow x+\sqrt{x}< 0\) giống như trên
\(A=-x+\sqrt{x}=-x+\sqrt{x}-\frac{1}{4}+\frac{1}{4}=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)
\(A_{max}=\frac{1}{4}\) khi \(\sqrt{x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{4}\)
a/ \(x^2-2x-1< 0\)
\(\Leftrightarrow\left(x-1\right)^2< 2\)
\(\Leftrightarrow-\sqrt{2}< x-1< \sqrt{2}\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
b/ \(2x^2-6x+5=\left(2x^2-\frac{2.\sqrt{2}.x.3}{\sqrt{2}}+\frac{9}{2}\right)+\frac{1}{2}=\left(\sqrt{2}x-\frac{3}{\sqrt{2}}\right)^2+\frac{1}{2}>0\)
Câu 2 tự làm nhé.
\(x^2-2x-1< 0\)
\(\left(x-2\right)x-1< 0\)
\(\left(x-2\right)x\le1\)
\(\Leftrightarrow1-\sqrt{2}< x< 1+\sqrt{2}\)
vâng, cảm ơn bạn ah
Bạn làm đúng rồi đó