K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2019

1) Ta có : 11a + 22b + 33c

      = 11a + 11.2b + 11.3c

      = 11.(a + 2b + 3c) \(⋮\)11

=> 11a + 22b + 33c \(⋮\)11

2) 2 + 22 + 23 + ... + 2100

= (2 + 22) + (23 + 24) + ... + (299 + 2100)

= (2 + 22) + 22.(2 + 22) + ... + 298.(2 + 22)

= 6 + 22.6 + ... + 298.6

= 6.(1 + 22 + .. + 298)

= 2.3.(1 + 22 + ... + 298\(⋮\)3

=> 2 + 22 + 23 + ... + 2100 \(⋮\)3

3) Ta có:  abcabc = abc000 + abc

 = abc x 1000 + abc 

 = abc x (1000 + 1)

= abc x 1001 

= abc .7. 13.11 (1)

= abc . 7 . 13 . 11 \(⋮\)

=> abcabc \(⋮\)7

=> Từ (1) ta có : abcabc = abc x 7.11.13 \(⋮\)11

     => abcabc \(⋮\)11

=> Từ (1) ta có :  abcabc = abc . 7.11.13 \(⋮\)           13

    => => abcabc \(⋮\)13

2 tháng 7 2019

1

.\(11a+22b+33c=11\left(a+2b+3c\right)⋮11\) 

\(\Rightarrow11a+22b+33c⋮11\left(đpcm\right)\) 

hc tốt

16 tháng 10 2021

\(B=3+3^2+3^3+....+3^{120}\)

a, Ta thấy : Cách số hạng của B đều chi hết cho 3 

\(B=3+3^2+3^3+....+3^{120}⋮3\)

\(b,B=3+3^2+3^3+....+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{119}+3^{120}\right)\)

\(B=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(B=3.4+3^3.4+...+3^{119}.4\)

\(B=4\left(3+3^3+...+3^{199}\right)\)

Có : \(B=4\left(3+3^3+...+3^{199}\right)⋮4\)

\(\Rightarrow B⋮4\)

\(c,B=3+3^2+3^3+....+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{119}+3^{120}\right)\)

\(B=\left(3+3^2\right)+3^2\left(3+3^2\right)+...+3^{118}\left(3+3^2\right)\)

\(B=13+3^2.13+...+3^{118}.13\)

\(B=13\left(3^2+3^4+...+3^{118}\right)\)

Có : \(B=13\left(3^2+3^4+...+3^{118}\right)⋮13\)

\(\Rightarrow B⋮13\)

28 tháng 11 2024

lạnh quá đừng ra đề nx

 

à mik cs đáp án đầy đu rùi nha bnaj

⇒4A=4+42+43+...+4100

⇒4A−A=(4+42+43+...+4100)−(1+4+42+...+499)

⇒3A=4100−1<4100=B

⇒A<B3

20 tháng 10 2021

Đáp án:

Giải thích các bước giải:

 a. A=1+(2-3)+(-4+5)+(6-7)+...+(-300+301)+302

A=1-1+1-1+1-1+...+1+302

A=1+302

A=303

2 tháng 9 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

2 tháng 9 2017

ko hiểu

28 tháng 9 2017

Ta xét :

\(3^{2014}+3^{2015}+3^{2016}+3^{2017}\)

\(=3^{2014}\left(1+3+3^2+3^3\right)\)

\(=3^{2014}.40\)

\(=3^{2013}.3.40\)

\(=3^{2013}.120\)

Mà \(120⋮120\)

\(\Rightarrow3^{2013}.120⋮120\)

\(\Rightarrow A⋮120\)

\(\RightarrowĐPCM\)

ta có A=3^2014+3^2015+3^2016+3^2017

A=3^2013(3+3^2+3^3+3^4)

A=3^2013 x 120 chia hết cho 120 (ĐCPCM)

12 tháng 7 2015

a, C=(1+3+3^2)+..........+3^9.(1+3+3^2)

C=13+.......+3^9.13

C=13(1+.....+3^9) chia hết cho 13

Vậy C chia hết cho 13

b, C=(1+3+3^2+3^3)+...........+3^8(1+3+3^2+3^3)

C=40+..........+3^8.40

C=40(1+....+3^8) chia hết cho 40

Vậy C chia hết cho 40

 

16 tháng 11 2016

Chia hết cho 40

bạn nhé

tk nha@@@@@@@@@@@@@@@@@@@@@@@@@@@2

LOL

12 tháng 11 2016

      B = 3+32 +...+3100

=>  B = (3+32+33+34)+(35+36+37+38)+.....+(397+398+399+3100)

=>  B = 120 + 34 . 120 +......+396 . 120

=>  B = 120.(1+34+38+....+396) chia hết cho 120 

=>  B chia hết cho 120 

Cho Mình  

12 tháng 11 2016

tích đúng nha