K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2022

Xét tam giác ABD:

E là trung điểm AB (gt).

H là trung điểm AD (gt).

\(\Rightarrow\) EH là đường trung bình.

\(\Rightarrow\) EH // BD; EH = \(\dfrac{1}{2}\) BD (Tính chất đường trung bình). (1)

Xét tam giác CBD:

F là trung điểm BC (gt).

G là trung điểm CD (gt).

\(\Rightarrow\) FG là đường trung bình.

\(\Rightarrow\) FG // BD; FG = \(\dfrac{1}{2}\) BD (Tính chất đường trung bình). (2)

Xét tamgiacs ACD:

H là trung điểm AD (gt).

G là trung điểm CD (gt).

\(\Rightarrow\) HG là đường trung bình.

\(\Rightarrow\) HG // AC (Tính chất đường trung bình).

Mà AC \(\perp\) BD (Tứ giác ABCD là hình thoi). 

\(\Rightarrow\) HG \(\perp\) BD.

Lại có: EH // BD (cmt).

\(\Rightarrow\) EH \(\perp\) HG.

Từ (1) và (2) \(\Rightarrow\) EH // FG; EH = FG.

\(\Rightarrow\) Tứ giác EFGH là hình bình hành (dhnb).

Mà EH \(\perp\) HG (cmt).

\(\Rightarrow\) Tứ giác EFGH là hình chữ nhật (dhnb).

b) Tứ giác ABCD là hình thoi (gt). 

\(\Rightarrow\) AC cắt BD tại trung điểm mỗi đường (Tính chất hình thoi).

Mà I là giao điểm của AC và BD (gt.)

\(\Rightarrow\) I là trung điểm của AC và BD.

\(\Rightarrow\left\{{}\begin{matrix}AI=\dfrac{1}{2}AC=\dfrac{1}{2}.8=4\left(cm\right).\\IB=\dfrac{1}{2}BD=\dfrac{1}{2}.10=5\left(cm\right).\end{matrix}\right.\)

Xét tam giác ABI: AI \(\perp\) BI (AC \(\perp\) BD).

\(\Rightarrow\) Tam giác ABI vuông tại I.

\(\Rightarrow S_{\Delta ABI}=\dfrac{1}{2}AI.IB=\dfrac{1}{2}.4.5=10\left(cm^2\right).\)

\(\perp\)

Câu 15: 

a: Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD
Do đó: EH là đường trung bình

=>EH//BD và EH=BD/2(1)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của CD

Do đó: FG là đường trung bình

=>FG//BD và FG=BD/2(2)

Xét ΔABC có 

E là trung điểm của AB

F là trung điểm của BC

Do đó: EF là đường trung bình

=>EF//AC

=>EF⊥BD

=>EF⊥EH

Từ (1) và (2) suy ra EH//FG và EH=FG

hay EHGF là hình bình hành

mà EF⊥EH

nên EHGF là hình chữ nhật

b: AI=AC/2=8/2=4(cm)

BI=BD/2=10/2=5(cm)

\(S_{AIB}=\dfrac{AI\cdot BI}{2}=\dfrac{5\cdot4}{2}=10\left(cm^2\right)\)

GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP!!! TRÌNH BÀY CÁC BƯỚC C/M NHÉ!Câu 13: Cho hình thang ABCD (BC // AD) có C=3D Câu 14: Cho hình thang cân ABCD có BC = 3cm. Đường chéo DB vuông góc với cạnh bên BC; DB là tia phân giác của góc D. Khi đó độ dài DC bằng? Câu 15: Cho tam giác ABC vuông ở A, AB    6cm;  AC=8cm. Gọi M, N lần lượt là trung điểm của AB và AC. Khi đó độ dài MN bằng?Câu 16: Cho tam giác ABC có chu vi bằng 48cm....
Đọc tiếp

GIÚP MÌNH VỚI MÌNH ĐANG CẦN GẤP!!! TRÌNH BÀY CÁC BƯỚC C/M NHÉ!

Câu 13: Cho hình thang ABCD (BC // AD) có C=3D 
Câu 14: Cho hình thang cân ABCD có BC = 3cm. Đường chéo DB vuông góc với cạnh bên BC; DB là tia phân giác của góc D. Khi đó độ dài DC bằng? Câu 15: Cho tam giác ABC vuông ở A, AB    6cm;  AC=8cm. Gọi M, N lần lượt là trung điểm của AB và AC. Khi đó độ dài MN bằng?
Câu 16: Cho tam giác ABC có chu vi bằng 48cm. Ba đường trung tuyến AD;  BE;  CF. Khi đó chu vi của tam giác DEF bằng?
Câu 17: Cho hình bình hành ABCD có A-B=50. Khi đó góc D có số đo là?
Câu 18: Cho hình vẽ bên, biết AD=24cm; BE=  32cm. Khi đó độ dài của CH bằng? 
Câu 19: Trong các câu sau, câu nào Sai?Hình bình hành có 2 góc có số đo là? 
Câu 20: Cho hình bình hành ABCD có A=120 độ;  AB=8cm. Gọi I là trung điểm của CD, biết AI=4cm, khi đó độ dài của đường chéo AC bằng?

0
12 tháng 8 2018

Ta có: SABCD = 2.0H.AB = 2.3.AB = 6AB

Mà SABCD = 48cm2

Suy ra 6AB = 48 => AB = 8(cm)

Mặt khác: 2OK.BC = SABCD => 2.4.BC = 48 => BC = 6(cm)

Chu vi hình bình hành ABCD là (8 + 6).2 = 28 (cm)