Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a , xetys tứ giác adme có :
me//ad (vì me//ac)
md//ae(vì md//ab)
suy ra tứ giác adme là hbh
Tự vẽ hình....
Giair
a, Ta có :
\(\hept{\begin{cases}ME//AB\Rightarrow ME//AD\\MD//AC\Rightarrow MD//AE\end{cases}}\)
=> ADME là hình bình hành ( đpcm )
b, Ta có : ADME là hình bình hành => AO=OM
Xét \(\Delta AHM\)
\(\hept{\begin{cases}AO=OM\\\widehat{H}=90^0\end{cases}}\)=> đường trung tuyến ứng với cạnh huyền thì bằng nửa cạnh ấy
=> HO=AO=OM
=> \(\Delta AOH\)cân ( đpcm )
Lời giải:
a) Ta có:
{ME∥ACAB⊥AC⇒ME⊥AB⇒∠MEA=900
{MF∥ABAB⊥AC⇒MF⊥AC⇒∠MFA=900
Tam giác ABC vuông tại A nên ∠EAF=900
Tứ giác AFME có 3 góc ∠MEA=∠MFA=∠EAF=900 nên là hình chữ nhật.
b)
Vì ME∥AC,MF∥AB nên áp dụng định lý Thales ta có:
MEAC=BMBC;MFAB=CMBC
Chia hai vế: ⇒MEMF.ABAC=BMCM
Vì AFME là hình chữ nhật (cmt) nên để nó là hình vuông cần có ME=MF
⇔MEMF=1⇔ABAC=BMCM
⇔ABAB+AC=BMBM+CM=BMBC
Vậy điểm M nằm trên BC sao cho BMBC=ABAB+AC thì AFME là hình vuông.