Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(3a.\left(2a^2-ab\right)=6a^3-3a^2b\)
\(\left(4-7b^2\right).\left(2a+5b\right)=8a+20b-14ab^2-35b^3\)
Bài 2:
\(2x^2-6x+xy-3y=2x.\left(x-3\right)+y.\left(x-3\right)=\left(x-3\right).\left(2x+y\right)\)
Bài 3: Tại x = 3/2, y =1/3 thì Q = 67/9
Bài 4:
\(\left(\frac{1}{x+1}+\frac{2x}{1-x^2}\right).\left(\frac{1}{x-1}\right)\) \(\frac{1}{\left(x+1\right).\left(x-1\right)}+\frac{2x}{\left(1-x^2\right).\left(x-1\right)}=\frac{x-1}{\left(x+1\right).\left(x-1\right)^2}+\frac{-2x}{\left(x-1\right)^2.\left(x+1\right)}\)
= \(\frac{x-1-2x}{\left(x+1\right).\left(x-1\right)^2}=\frac{-\left(x+1\right)}{\left(x+1\right).\left(x-1\right)^2}=\frac{-1}{\left(x-1\right)^2}\)
\(x^2\left(y-1\right)-4\left(y-1\right)\\ =\left(y-1\right)\left(x^2-4\right)=\left(y-1\right)\left(x-2\right)\left(x+2\right)\)
(5x - 2y)(x2 - xy + 1)
= 5x3 - 5x2y + 5x - 2x2y + 2xy2 - 2y
= 5x3 - 7x2y + 2xy2 + 5x - 2y
(x - 1)(x + 1)(x + 2)
= (x2 - 1)(x + 2)
= x3 + 2x2 - x - 2
1/2x2y2(2x + y)(2x - y)
= 1/2x2y2(4x2 - y2)
= 2x4y2 - 1/2x2y4
TL:
\(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-yx^2-xy^2-y^3\)
\(=x^3-y^3\)
\(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)
\(=\left(x^3+x^2y+xy^2\right)-\left(x^2y+xy^2+y^3\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)
\(=x^3-y^3\)
[(x2-2xy+2xy2).(x+2y)-(x2+4y2).(x-y)]2xy
=( x3 + 2x2y-2x2y-4xy2+2x2y2+4xy3-x3+x2y-4xy2+4y3 )2xy
=2xy(2x2y2-8xy2+4xy3+x2y+4y3)
= 4x3y3-16x2y3+8x2y4+2x3y2+8xy4
Trả lời:
[ ( x2 - 2xy + 2xy2 ) ( x + 2y ) - ( x2 + 4y2 ) ( x - y ) ] 2xy
= [ ( x3 + 2x2y - 2x2y - 4xy2 + 2x2y2 + 4xy3 ) - ( x3 - x2y + 4xy2 - 4y3 ) ] 2xy
= ( x3 + 2x2y - 2x2y - 4xy2 + 2x2y2 + 4xy3 - x3 + x2y - 4xy2 + 4y3 ) 2xy
= ( x2y - 8xy2 + 2x2y2 + 4xy3 + 4y3 ) 2xy
= 2x3y2 - 16x2y3 + 4x3y3 + 8x2y4 + 8xy4
a) (x+2)(x-3)=0
<=> x+2=0
x-3=0
<=> x=-2
x= 3
b) 2x-x2=0
<=> x(2-x) =0
<=> x=0
2-x=0
<=> x=0
x=2
a)(x+2)(x-3)=0
=>\(\orbr{\begin{cases}x+2=0\\x-3=0\end{cases}}\)=>\(\orbr{\begin{cases}x=-2\\x=3\end{cases}}\)
Vậy x=-2 hoặc x=3
b) 2x-x2=0
=> x(2-x)=0
=>\(\orbr{\begin{cases}x=0\\2-x=0\end{cases}}\)=>\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy x=0 hoặc x=2
Bài 1.
x^3 + 3x^2 + 3 x^3 + 1 1 1 x^3 - 3x^2 + 2
3x2 + 2 có bậc thấp hơn x3 + 1 nên không thể chia tiếp
Vậy x3 + 3x2 + 3 = 1( x3 + 1 ) + 3x2 + 2
Bài 2.
Ta có : x3 + 3x2 + 3x + a có bậc là 3
x + 2 có bậc là 1
=> Thương bậc 2
lại có hệ số cao nhất của đa thức bị chia là 1
Đặt đa thức thương là x2 + bx + c
khi đó : x3 + 3x2 + 3x + a chia hết cho x + 2
<=> x3 + 3x2 + 3x + a = ( x + 2 )( x2 + bx + c )
<=> x3 + 3x2 + 3x + a = x3 + bx2 + cx + 2x2 + 2bx + 2c
<=> x3 + 3x2 + 3x + a = x3 + ( b + 2 )x2 + ( c + 2b )x + 2c
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}b+2=3\\c+2b=3\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\c=1\\a=2\end{cases}}\Rightarrow a=2\)
Vậy a = 2
\(\left(x-1\right)\left(x+1\right)\left(x+2\right)\)
\(=\left(x^2-1\right)\left(x+2\right)\)
\(=x^3+2x^2-x-2\)