Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
\(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x^3+x^2y+xy^2-yx^2-xy^2-y^3\)
\(=x^3-y^3\)
\(\left(x-y\right)\left(x^2+xy+y^2\right)\)
\(=x\left(x^2+xy+y^2\right)-y\left(x^2+xy+y^2\right)\)
\(=\left(x^3+x^2y+xy^2\right)-\left(x^2y+xy^2+y^3\right)\)
\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3\)
\(=x^3-y^3\)
\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2}{xy}:\frac{\left(x-y\right)^2}{x^2y^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2x^2y^2}{xy\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)
\(=\frac{2xy}{\left(x-y\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}=\frac{-x^2+2xy-y^2}{\left(x-y\right)^2}\)
\(=-\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)
Đặt x^2+y^2+z^2 =a ; xy+yz+zx=b
=> (x+y+z)^2 =x^2+y^2+z^2+2xy+2yz+2zx =a+2b
Ta có A= (x^2+y^2+z^2)(xy+yz+zx) +(x+y+z)^2
= a(a+2b)+b^2=a^2+2ab+b^2=(a+b)^2
=(x^2+y^2+z^2 +xy+yz+zx)^2
\(A=\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2-\left(xy+yz+zx\right)^2\left(1\right)\)
Đặt \(x^2+y^2+z^2=a\)
\(xy+yz+zx=b\Rightarrow2\left(xy+yz+zx\right)=2b\)
\(\Rightarrow a+2b=\left(x+y+z\right)^2\)
Kết hợp (1) ta được : \(A=a\left(a+2b\right)+b^2\)
\(=a^2+2ab+b^2\)
\(=\left(a+b\right)^2\)
\(=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)
\(y\left(x-y\right)^2+xy\left(x-y\right)\)
\(=\left(xy-y^2\right)\left(x-y\right)+xy\left(x-y\right)\)
\(=\left(xy-y^2+xy\right)\left(x-y\right)\)
\(=\left(2xy-y^2\right)\left(x-y\right)\)
y ( x - y)2 + xy ( x-y) = (x - y) [(x-y) y +xy]
= (x-y) ( 2xy -y2)
Phân tích thành nhân tử
\(=\left(my+nx\right)\left(ny+mx\right)\)
mn(x2 +y2) +xy(m2 +n2)= mnx2 +mny2 +xym2 +xyn2
=mx(nx + my) +ny( my +nx)
=(mx+ny)(nx+my)
\(xy\left(x-y\right)-xz\left(x+z\right)+yz\left(2x-y+z\right)\)
\(=xy\left(x-y\right)-xz\left(x+z\right)+yz\left[\left(x-y\right)+\left(x+z\right)\right]\)
\(=xy\left(x-y\right)-xz\left(x+z\right)+yz\left(x-y\right)+yz\left(x+z\right)\)
\(=\left(x-y\right)\left(xy+yz\right)+\left(x+z\right)\left(yz-xz\right)\)
\(=y\left(x-y\right)\left(x+z\right)-z\left(x+z\right)\left(x-y\right)\)
\(=\left(x-y\right)\left(x+z\right)\left(y-z\right)\)
-13/2xy.(-x^2-xy-5)=-13xy.(-x^2)+(-13/2).(-xy)+(-13/2).(-5)=13x^3y+13/2x^2y^265/2xy
`( (-13)/2xy) (-x^2 - xy - 5)`
`= (-13)/2 xy . (-x)^2 +(-13)/2xy . (-xy) + (-13)/2xy . (-5)`
`= 13/2 x^3y + 13/x^2y^2 + 65/2 xy`