\(\sqrt{x}=2\) thì \(x^2\)=? 

nếu x 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

16

x

11 tháng 11 2021

\(1,x^2=16\\ 2,\sqrt{x^2}=\left|x\right|=x\)

27 tháng 8 2016

Ta có: 

\(P=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\left(\frac{1-x}{\sqrt{2}}\right)^2\)

\(P=\left(\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(1-x\right)^2}{2}\)

\(P=\left(\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(x-1\right)^2}{2}\)

\(P=\left(\frac{-2\sqrt{x}}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\right).\frac{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2}{2}\)

\(P=\left(-\sqrt{x}\right)\left(\sqrt{x}-1\right)\)

\(P=\sqrt{x}-x\)

b) Để \(P>0\) thì \(\sqrt{x}-x>0\)

  • \(\sqrt{x}-x>0\)

   \(\Rightarrow\sqrt{x}\left(1-\sqrt{x}\right)>0\)

Suy ra: TH1\(\sqrt{x}< 0\) và \(1-\sqrt{x}< 0\) (Loại) vì \(\sqrt{x}\ge0\)

            TH2:\(\sqrt{x}>0\)  và \(1-\sqrt{x}>0\) (Nhận)

Ta có \(\sqrt{x}>0\) và \(1-\sqrt{x}>0\) để \(P>0\)

  • \(\sqrt{x}>0\) \(\Rightarrow x>0\)
  • \(1-\sqrt{x}>0\) \(\Rightarrow\sqrt{x}< 1\) \(\Rightarrow x< 1\)

Vậy để \(P>0\) thì \(0< x< 1\)

c)\(P=\sqrt{x}-x\)

\(P=-\left(x-\sqrt{x}\right)\)

\(P=-\left(\left(\sqrt{x}\right)^2-2.\frac{1}{2}.\sqrt{x}+\frac{1}{4}-\frac{1}{4}\right)\)

\(P=-\left(\left(\sqrt{x}-\frac{1}{2}\right)^2-\frac{1}{4}\right)\)

\(P=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)

Vì \(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\)

\(\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\)

Nên \(-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Dấu "=" xảy ra khi \(\sqrt{x}-\frac{1}{2}=0\) \(\Rightarrow x=\frac{1}{4}\)

Vậy GTLN của \(P\) là \(\frac{1}{4}\) khi \(x=\frac{1}{4}\)

 

 

 

 

 

 

15 tháng 8 2017

b) \(\sqrt{4x}-\sqrt{9x}+\sqrt{25x}=2\sqrt{x}-3\sqrt{x}+5\sqrt{x}=4\sqrt{x}\)

11 tháng 8 2018

1.

\(a.\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)

\(b.\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\sqrt{2}+1+2-\sqrt{2}=3\)\(c.\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)

\(d.\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\dfrac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

2.

\(a.x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(b.x+5\sqrt{x}+6=x+2\sqrt{x}+3\sqrt{x}+6=\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)=\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\)( mạo danh sửa đề)

\(c.x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

11 tháng 8 2018

\(1a.\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}+\sqrt{5-2\sqrt{5}+1}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)

\(b.\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}+\sqrt{4-2.2\sqrt{2}+2}=\sqrt{2}+1+2-\sqrt{2}=3\)\(c.\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{9+2.3\sqrt{2}+2}-\sqrt{9-2.3\sqrt{2}+2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)\(d.\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\dfrac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{\sqrt{5+2\sqrt{5}+1}-\sqrt{5-2\sqrt{5}+1}}{\sqrt{2}}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}=\sqrt{2}\)\(2a.x-1=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

\(b.x+5\sqrt{x}+6=x+2\sqrt{x}+3\sqrt{x}+6=\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)=\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\)

\(c.x-4=\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\)

17 tháng 8 2018

\(A=\left(x-2\right)\cdot\sqrt{\dfrac{9}{\left(x-2\right)^2}}+3=\dfrac{3\left(x-2\right)}{\left|x-2\right|}+3=\dfrac{3\left(x-2\right)}{-\left(x-2\right)}=-3+3=0\)

\(B=\sqrt{\dfrac{a}{6}}+\sqrt{\dfrac{2a}{3}}+\sqrt{\dfrac{3a}{2}}=\dfrac{\sqrt{a}}{\sqrt{6}}+\dfrac{\sqrt{2a}}{\sqrt{3}}+\dfrac{\sqrt{3a}}{\sqrt{2}}=\dfrac{\sqrt{a}+2\sqrt{a}+3\sqrt{a}}{\sqrt{6}}=\dfrac{6\sqrt{a}}{\sqrt{6}}=\sqrt{6a}\)

\(E=\sqrt{9a^2}+\sqrt{4a^2}+\sqrt{\left(1-a\right)^2}+\sqrt{16a^2}=3\left|a\right|+2\left|a\right|+\left|1-a\right|+4\left|a\right|=9\left|a\right|+1-a=-9a+1-a=-10a+1\)

\(F=\left|x-2\right|\cdot\dfrac{\sqrt{x^2}}{x}=\left|x-2\right|\cdot\dfrac{\left|x\right|}{x}=\dfrac{x\left(x-2\right)}{x}=x-2\)

\(H=\dfrac{x^2+2\sqrt{3}\cdot x+3}{x^2-3}=\dfrac{\left(x+\sqrt{3}\right)^2}{\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)}=\dfrac{x+\sqrt{3}}{x-\sqrt{3}}\)

\(I=\left|x-\sqrt{\left(x-1\right)^2}\right|-2x=\left|x-\left(-\left(x-1\right)\right)\right|-2x=\left|x+x-1\right|-2x=\left|2x-1\right|-2x=1-4x\)

17 tháng 6 2019

\(a,\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}=\left|\sqrt{x}-\sqrt{y}\right|\left(\sqrt{x}+\sqrt{y}\right)\)

                                                                                \(=\left(\sqrt{y}-\sqrt{x}\right)\left(\sqrt{x}+\sqrt{y}\right)\)

                                                                               \(=y-x\)

\(b,\frac{3-\sqrt{x}}{x-9}=\frac{3-\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=-\frac{1}{\sqrt{x}+3}\)

\(c,\frac{x-5\sqrt{x}+6}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}{\sqrt{x}-3}=\sqrt{x}-2\)

\(d,6-2x-\sqrt{9-6x+x^2}=6-2x-\sqrt{\left(3-x\right)^2}=6-2x-3+x=3-x\)

17 tháng 6 2019

\(a,\)\(\sqrt{\left(\sqrt{x}-\sqrt{y}\right)^2\left(\sqrt{x}+\sqrt{y}\right)^2}\)

\(=|\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)|\)

\(=|\sqrt{x}^2-\sqrt{y}^2|\)

\(=|x-y|\)

Vì \(x\le y\)\(\Rightarrow x-y\ge0\)

\(\Rightarrow|x-y|=x-y\)

5 tháng 8 2018

\(A=\left(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}+\dfrac{x\sqrt{x}-y\sqrt{y}}{y-x}\right):\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+\sqrt{xy}}{\sqrt{x}+\sqrt{y}}=\left(\sqrt{x}+\sqrt{y}-\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\right).\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}.\dfrac{\sqrt{x}+\sqrt{y}}{x-\sqrt{xy}+y}=\dfrac{\sqrt{xy}}{x-\sqrt{xy}+y}\)

20 tháng 8 2016

a/ Sai đề. 

\(x+2\sqrt{2x-4}=\left(x-2\right)+2.\sqrt{2}.\sqrt{x-2}+2=\left(\sqrt{2}+\sqrt{x-2}\right)^2\)

b/ \(M=\sqrt{x+2\sqrt{2x-4}}+\sqrt{x-2\sqrt{2x-4}}=\sqrt{\left(\sqrt{2}+\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{2}-\sqrt{x-2}\right)^2}\)

\(=\sqrt{2}+\sqrt{x-2}+\left|\sqrt{2}-\sqrt{x-2}\right|\)

1. Nếu \(2\le x\le4\) thì \(M=\sqrt{2}+\sqrt{x-2}+\sqrt{2}-\sqrt{x-2}=2\sqrt{2}\)

2. Nếu \(x>4\) thì \(M=\sqrt{2}+\sqrt{x-2}+\sqrt{x-2}-\sqrt{2}=2\sqrt{x-2}\)

2 tháng 9 2018

Đề câu c co bị sai ko vậy bạn? (y - 2\(\sqrt{x}\) +1)

a: \(=\sqrt{3}+1-\sqrt{3}=1\)

b: \(=\sqrt{\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2}}=\dfrac{\left|\sqrt{x}-1\right|}{\sqrt{x}+1}\)

c: Sửa đề:\(\dfrac{x-1}{\sqrt{y}-1}\cdot\sqrt{\dfrac{y-2\sqrt{y}+1}{\left(x-1\right)^4}}\)

\(=\dfrac{x-1}{\sqrt{y}-1}\cdot\dfrac{\sqrt{y}-1}{\left(x-1\right)^2}=\dfrac{1}{\left(x-1\right)}\)