Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}\ge\frac{\left(sin^2x+cos^2x\right)^2}{m+n}=\frac{1}{m+n}\)
Dấu = xảy ra khi \(\frac{sin^2x}{m}=\frac{cos^2x}{n}\)
Thế vào điều kiện đề bài ta có:
\(\frac{sin^4x}{m}+\frac{cos^4x}{n}=\frac{1}{m+n}\)
\(\Leftrightarrow\frac{sin^2x}{m}.\left(sin^2x+cos^2x\right)=\frac{1}{m+n}\)
\(\Leftrightarrow\frac{sin^2x}{m}=\frac{1}{m+n}\left(1\right)\)
Ta cần chứng minh
\(\frac{sin^{2008}x}{m^{1003}}+\frac{cos^{2008}x}{n^{1003}}=\frac{1}{\left(m+n\right)^{1003}}\)
\(\Leftrightarrow\frac{sin^{2006}}{m^{1003}}.\left(sin^2x+cos^2x\right)=\frac{1}{\left(m+n\right)^{1003}}\)
\(\Leftrightarrow\left(\frac{sin^2}{m}\right)^{1003}=\frac{1}{\left(m+n\right)^{1003}}\left(2\right)\)
Từ (1) và (2) ta có điều phải chứng minh là đúng.
\(A=\frac{x^2+\left(a+b\right)x+ab}{x}=x+\frac{ab}{x}+a+b\)
\(\Rightarrow A\ge2\sqrt{\frac{ab.x}{x}}+a+b=2\sqrt{ab}+a+b\)
Dấu "=" xảy ra khi \(x=\sqrt{ab}\)
b/ \(x^2+x=y^2\)
- Với \(x=0\Rightarrow y=0\)
- Với \(x\ge1\Rightarrow\left\{{}\begin{matrix}x^2+x>x^2\\x^2+x< x^2+2x+1=\left(x+1\right)^2\end{matrix}\right.\)
\(\Rightarrow x^2< y^2< \left(x+1\right)^2\Rightarrow\) không tồn tại y nguyên thỏa mãn
- Với \(x\le-1\Rightarrow\left\{{}\begin{matrix}x^2+x=\left(x+1\right)^2-\left(x+1\right)\ge\left(x+1\right)^2\\x^2+x< x^2\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2\le y^2< x^2\Rightarrow y^2=\left(x+1\right)^2\)
\(\Rightarrow x^2+x=\left(x+1\right)^2\Rightarrow x+1=0\Rightarrow x=-1\Rightarrow y=0\)
\(2\sqrt{xy}+\sqrt{2x}+\sqrt{2y}\ge8\)
Mà \(\left\{{}\begin{matrix}2\sqrt{xy}\le x+y\\\sqrt{2x}+\sqrt{2y}\le2\sqrt{x+y}\end{matrix}\right.\)
\(\Rightarrow x+y+2\sqrt{x+y}\ge8\)
\(\Leftrightarrow\left(\sqrt{x+y}-2\right)\left(\sqrt{x+y}+4\right)\ge0\)
\(\Rightarrow x+y\ge4\)
\(P=\frac{x^2}{y}+\frac{y^2}{x}+\frac{1}{x}+\frac{1}{y}\ge x+y+\frac{4}{x+y}\)
\(P\ge\frac{x+y}{4}+\frac{4}{x+y}+\frac{3\left(x+y\right)}{4}\ge2\sqrt{\frac{4\left(x+y\right)}{4\left(x+y\right)}}+\frac{3.4}{4}=5\)
Dấu "=" xảy ra khi \(x=y=2\)
1/ b) Đặt \(\sqrt[3]{6x+4}=a\Rightarrow a^3=6x+4\)
Ta có hệ: \(\left\{{}\begin{matrix}x^3=6a+4\\a^3=6x+4\end{matrix}\right.\)
Lấy pt trên trừ pt dưới vế với vế, suy ra:
\(\left(x-a\right)\left(x^2+ax+a^2+6\right)=0\)
\(\Leftrightarrow x=a\Leftrightarrow x^3-6x-4=0\Leftrightarrow\left(x+2\right)\left(x^2-2x-2\right)=0\)
Đề sai . Với m = n = 1 thì
\(VT-VP=\left|1-\sqrt{2}\right|-\frac{1}{\sqrt{3}+\sqrt{2}}=\sqrt{2}-1-\frac{\sqrt{3}-\sqrt{2}}{3-2}\)
\(=\sqrt{2}-1-\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{2}-\left(1+\sqrt{3}\right)\)
Dễ thấy \(2\sqrt{2}>1+\sqrt{3}\)Nên VT - VP > 0
=> VT > VP
=> Đề sai :3
Trời đất, nàng vứt của người ta đi 2 chữ quan trọng nhất là "lớn nhất" rồi nàng ơi =))
Có 2 chữ đó thì bài này dễ giải quyết thôi
Dễ dàng c/m pt có 2 nghiệm pb
Đặt \(P=\left|\frac{x_1+x_2+4}{x_1-x_2}\right|\Rightarrow P^2=\frac{\left(x_1+x_2+4\right)^2}{\left(x_1-x_2\right)^2}=\frac{\left(x_1+x_2+4\right)^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(P^2=\frac{\left(4m+4\right)^2}{16m^2-4\left(3m^2-3\right)}=\frac{16\left(m+1\right)^2}{16m^2-12m^2+12}=\frac{4\left(m+1\right)^2}{m^2+3}\)
\(P^2=\frac{12m^2+24m+12}{3\left(m^2+3\right)}=\frac{16\left(m^2+3\right)-4m^2+24m-36}{3\left(m^2+3\right)}=\frac{16}{3}-\frac{4\left(m-3\right)^2}{3\left(m^2+3\right)}\le\frac{16}{3}\)
\(\Rightarrow P\le\frac{4\sqrt{3}}{3}\)
Dấu "=" xảy ra khi \(m=3\)
Đặt \(\left(x+1;y+1;z+4\right)=\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a;b;c>0\\a+b+c=6\end{matrix}\right.\)
\(A=\frac{\left(a-1\right)\left(b-1\right)-1}{ab}+\frac{c-4}{c}=\frac{ab-a-b}{ab}+\frac{c-4}{c}\)
\(A=2-\left(\frac{1}{a}+\frac{1}{b}+\frac{4}{c}\right)\le2-\frac{\left(1+1+2\right)^2}{a+b+c}=2-\frac{16}{6}=-\frac{2}{3}\)
\(A_{max}=-\frac{2}{3}\) khi \(\left(a;b;c\right)=\left(\frac{3}{2};\frac{3}{2};3\right)\) hay \(\left(x;y;z\right)=\left(\frac{1}{2};\frac{1}{2};-1\right)\)