![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng dãy tỉ số bằng nhau:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{x+y+z}{1}=x+y+z\)
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b}=\frac{z^2}{c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)
=> \(x+y+z=x^2+y^2+z^2\)
Suy ra: \(\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zt\right)=x+y+z+2\left(xy+yz+zt\right)\)
=> \(xy+yz+zt=\frac{1}{2}\left(x+y+z\right)^2-\frac{1}{2}\left(x+y+z\right)\)
Đặt x+y+z=t
Ta có: \(xy+yz+zt=\frac{1}{2}\left(t^2-t\right)\)
M=xy+yz+zt=\(\frac{1}{2}\left(t^2-t\right)+2015=\frac{1}{2}\left(t^2-2.t.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)+2015=\frac{1}{2}\left(t-\frac{1}{2}\right)^2-\frac{1}{8}+2015\)
\(=\frac{1}{2}\left(t-\frac{1}{2}\right)^2+\frac{16119}{8}>0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(\left(3x-1\right)^2-\left(x+3\right)^3=\left(2-x\right)\left(x^2+2x+4\right)\)
\(\Leftrightarrow9x^2-6x+1-x^3-9x^2-27x-27=8-x^3\)
\(\Leftrightarrow-x^3-33x-26-8+x^3=0\)
=>-33x=34
hay x=-34/33
b: \(\left(x+1\right)\left(x-1\right)\left(x^2+1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2-1\right)-\left(x^2-1\right)^2=2\)
\(\Leftrightarrow x^4-1-x^4+2x^2-1=2\)
\(\Leftrightarrow2x^2=4\)
hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
c: \(x^2-2\sqrt{3}x+3=0\)
\(\Leftrightarrow\left(x-\sqrt{3}\right)^2=0\)
hay \(x=\sqrt{3}\)
d: \(\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)-\left(x-\sqrt{2}\right)^2=0\)
\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(x+\sqrt{2}-x+\sqrt{2}\right)=0\)
\(\Leftrightarrow x-\sqrt{2}=0\)
hay \(x=\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Theo đề bài, ta có:
\(x^3+y^3=x^2-xy+y^2\)
hay \(\left(x^2-xy+y^2\right)\left(x+y-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-xy+y^2=0\\x+y=1\end{cases}}\)
+ Với \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\)
+ với \(x+y=1\Rightarrow0\le x,y\le1\Rightarrow P\le\frac{1+\sqrt{1}}{2+\sqrt{0}}+\frac{2+\sqrt{1}}{1+\sqrt{0}}=4\)
Dấu đẳng thức xảy ra <=> x=1;y=0 và \(P\ge\frac{1+\sqrt{0}}{2+\sqrt{1}}+\frac{2+\sqrt{0}}{1+\sqrt{1}}=\frac{4}{3}\)
Dấu đẳng thức xảy ra <=> x=0;y=1
Vậy max P=4 và min P =4/3
![](https://rs.olm.vn/images/avt/0.png?1311)
b) ta có: \(\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+y\right)^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow2x^2+2y^2\ge\left(x+y\right)^2\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
- Thay \(x^2+y^2=1\)
\(\Rightarrow\)\(2\ge\left(x+y\right)^2\)
\(\Leftrightarrow\sqrt{\left(x+y\right)^2}\le\sqrt{2}\)
\(\Leftrightarrow\left|x+y\right|\le\sqrt{2}\)
\(\Leftrightarrow-\sqrt{2}\le x+y\le\sqrt{2}\)
- Áp dụng bđt: \(a^2+b^2+c^2\ge ab+bc+ac\)
có: \(a^4+b^4+c^4\ge a^2b^2+b^2c^2+a^2c^2\) (1)
- Áp dụng tiếp bđt trên
có: \(a^2b^2+b^2c^2+a^2c^2\ge a^2bc+ab^2c+c^2ab\) (2)
\(\Leftrightarrow\)\(a^2b^2+b^2c^2+a^2c^2\ge abc\left(a+b+c\right)\) (3)
(1),(2),(3)\(\Rightarrow\) \(a^4+b^4+c^4\ge abc\left(a+b+c\right)\)
\(x^2=81\)
\(x^2=81\)