K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 12 2017

a+b+c = 0=> a+b=-c ; b+c=-a ; c+a=-b

Khi đó : (1+a/b).(1+b/c).(1+c/a) = a+b/b . b+c/c . c+a/a = (-c/b).(-a/c).(-b/c) = -1

=> ĐPCM

k mk nha

10 tháng 3 2019

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\Leftrightarrow abc=\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(\Leftrightarrow abc=a^2b+abc+a^2c+b^2a+abc+b^2c+c^2a+abc+c^2b\)

\(\Leftrightarrow a^2b+b^2a+b^2c+c^2b+a^2c+c^2a-2abc=0\)

\(\Leftrightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a^2+2ab+b^2\right)=0\)

\(\Leftrightarrow ab\left(a+b\right)+c^2\left(a+b\right)+c\left(a+b\right)^2=0\)

\(\Leftrightarrow\left(a+b\right)\left[ab+c^2+c\left(a+b\right)\right]=0\Leftrightarrow\left(a+b\right)\left(ab+c^2+ac+bc\right)=0\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)Chúc bạn học tốt!

11 tháng 3 2019

Phú Quý Lê Tăng ơi! Hình như bn làm lộn dấu 1 bước phải ko? Chỗ đó hình như phải là +2ab mới đúng.

27 tháng 12 2020

\(\left(a^2-bc\right)\left(b-abc\right)=\left(b^2-ca\right)\left(a-abc\right)\)

\(\Leftrightarrow a^2b+ab^2c^2-a^3bc-b^2c=b^2a+a^2bc^2-ca^2-ab^3c\)

\(\Leftrightarrow a^2b-ab^2-b^2c+ca^2=a^2bc^2-ab^3c+a^3bc-ab^2c^2\)

\(\Leftrightarrow\left(a-b\right)\left(ab+bc+ca\right)=abc\left(a-b\right)\left(a+b+c\right)\)

\(\Leftrightarrow ab+bc+ca=abc\left(a+b+c\right)\Leftrightarrow a+b+c=\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\left(đpcm\right)\)

9 tháng 5 2019

a)\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)<=>a(b+c)<b(a+c)<=>ab+ac<ac+bc<=>ac<bc<=>a<b(đúng theo giả thiết)

Vậy:\(\frac{a}{b}\)<\(\frac{a+c}{b+c}\)

b) (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=\(\frac{a+b}{a}\)+\(\frac{a+b}{b}\)=1+\(\frac{b}{a}\)+1+\(\frac{a}{b}\)

Giả sử a<b, ta đặt b=a+k(k>0)

Khi đó (a+b)(\(\frac{1}{a}\)+\(\frac{1}{b}\))=2+\(\frac{a+k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{k}{a}\)+\(\frac{a}{b}\)=3+\(\frac{bk+a^2}{ab}\)=3+\(\frac{ak+k^2+a^2}{ab}\)=3+\(\frac{a\left(a+k\right)+k^2}{ab}\)=3+\(\frac{ab+k^2}{ab}\)=4+\(\frac{k^2}{ab}\)\(\ge\)4(đẳng thức xảy ra khi và chỉ khi a=b)

Chứng minh tương tự với a>b

9 tháng 5 2019

cm cái j v bn ?