K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2016

Dùng phép biến dổi tương đương

a<\(\frac{a+b}{2}\)\(\Leftrightarrow\)\(a-\frac{a+b}{2}<0\Leftrightarrow\frac{2a-a-b}{2}<0\)

\(\Leftrightarrow\frac{a-b}{2}<0\)là đúng vì a<b nên a-b<0 

BĐT được chứng minh 

Vế còn lại tương tự

 

14 tháng 5 2021

DEO AI BT DAU A.Zay nen tu lam nha.

7 tháng 8 2019

Đặt \(2^a=x;2^b=y;2^c=z\left(x,y,z>0\right)\)

=>\(xyz=2^{a+b+c}=1\)

Khi đó ĐPCM trở thành

\(x^3+y^3+z^3\ge x+y+z\)

Cosi \(x^3+1+1\ge3x;y^3+1+1\ge3y;z^3+1+1\ge3z\)

=> \(x^3+y^3+z^3+6\ge3\left(x+y+z\right)\)

Mà \(\)\(x+y+z\ge3\sqrt[3]{xyz}=3\)

=> \(x^3+y^3+z^3\ge x+y+z\)(ĐPCM)

Dấu bằng xảy ra khi x=y=z=1=> \(a=b=c=0\)

7 tháng 8 2019

Trần Phúc Khang hình như chỗ \(x+y+z\ge3\)\(\Rightarrow\)\(x^3+y^3+z^3+6\ge3\left(x+y+z\right)\) ngược dấu đó anh 

Cần chứng minh: \(x^3+y^3+z^3\ge x+y+z\)

\(x^3+y^3+z^3\ge\frac{\left(x^2+y^2+z^2\right)^2}{x+y+z}\ge\frac{\frac{\left(x+y+z\right)^4}{9}}{x+y+z}=\frac{\left(x+y+z\right)^3}{9}\)

Mà \(x+y+z=2^a+2^b+2^c\ge3\sqrt[3]{2^{a+b+c}}=3\)\(\Leftrightarrow\)\(\left(x+y+z\right)^2\ge9\)

\(\Leftrightarrow\)\(x+y+z\le\frac{\left(x+y+z\right)^3}{9}\le x^3+y^3+z^3\) đpcm

sai thì mn góp ý ạ 

5 tháng 7 2018

Đặt x = a - b ; y = b - c ; z = c - a thì x + y + z = a - b + b - c + c - a = 0

Ta có : \(\sqrt{\frac{1}{(a-b)^2}+\frac{1}{(b-c)^2}+\frac{1}{(c-a)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{y^2}}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{y})^2-2(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx})\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2-2\frac{x+y+z}{xyz}\)

\(=(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})^2=(\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a})^2(đpcm)\)

Chúc bạn học tốt

30 tháng 5 2021

Ta có \(3a+1\ge\left(\dfrac{\sqrt{10}-1}{3}a+1\right)^2\Leftrightarrow a\left(3-a\right)\ge0\) (luôn đúng)

Do đó \(\sqrt{3a+1}\ge\dfrac{\sqrt{10}-1}{3}a+1\).

Tương tự, \(\sqrt{3b+1}\ge\dfrac{\sqrt{10}-1}{3}b+1;\sqrt{3c+1}\ge\dfrac{\sqrt{10}-1}{3}c+1\).

Do đó \(\sqrt{3a+1}+\sqrt{3b+1}+\sqrt{3c+1}\ge\sqrt{10}+2\).

Dấu "=" xảy ra khi chẳng hạn a = 3; b = c = 0

30 tháng 5 2021

Tham khảo:

https://hoc24.vn/hoi-dap/tim-kiem?id=219071991005&q=Cho%203%20s%E1%BB%91%20th%E1%BB%B1c%20kh%C3%B4ng%20%C3%A2m%20a%2Cb%2Cc%20v%C3%A0%20a%20b%20c%3D3%20T%C3%ACm%20GTLN%20v%C3%A0%20GTNN%20c%E1%BB%A7a%20bi%E1%BB%83u%20th%E1%BB%A9c%20K%3D%5C%28%5Csqrt%7B3a%201%7D%20%5Csqrt%7B3b%201%7D%20%5Csqrt%7B3c%201%7D%5C%29

7 tháng 6 2021

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)

<=> \(\frac{a+b+c}{b+c}+\frac{a+b+c}{c+a}+\frac{a+b+c}{a+b}\ge\frac{9}{2}\)

<=> \(2\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)

<=> \(\left(a+b+b+c+c+a\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge9\)

<=> \(\frac{a+b}{b+c}+\frac{a+b}{c+a}+1+1+\frac{b+c}{c+a}+\frac{b+c}{a+b}+\frac{c+a}{b+c}+1+\frac{c+a}{a+b}\ge9\)

<=> \(\left(\frac{a+b}{b+c}+\frac{b+c}{a+b}\right)+\left(\frac{a+b}{c+a}+\frac{c+a}{a+b}\right)+\left(\frac{b+c}{c+a}+\frac{c+a}{b+c}\right)\ge6\)(đúng)

=> ĐPCM

7 tháng 6 2021

Mình làm cách đơn giản nhất nhá :))

Ta có:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+3=\left(\frac{a}{b+c}+1\right)+\left(\frac{b}{c+a}+1\right)+\left(\frac{c}{a+b}+1\right)\)

\(=\left(a+b+c\right)\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}\right)\ge\frac{9\left(a+b+c\right)}{2\left(a+b+c\right)}=\frac{9}{2}\left(Cauchy-Schwarz\right)\)

Hay \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+3\ge\frac{9}{2}\Leftrightarrow\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)