\(\sqrt{a+3}+2\sqrt{b+3}<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

bunyakovsky:

\(\left(\sqrt{a+3}+\sqrt{2}.\sqrt{2b+6}\right)^2\le\left(1+2\right)\left(a+2b+9\right)< 3.12=36\)

\(\Rightarrow0< \sqrt{a+3}+2\sqrt{b+3}< 6\)

NV
10 tháng 5 2019

2 số thực dương và \(a+2b< 0\) ạ?

Có gì đó rất ảo diệu ở đây :(

Bài 1:a) Cho biểu thức A= \(\frac{5\sqrt{x}+4}{x-5\sqrt{x}+4}-\frac{3-2\sqrt{x}}{\sqrt{x}-4}+\frac{\sqrt{x}+2}{\sqrt{x}-1}\)Tìm tất cả các giá trị của x để A < 1b) Cho hai số dương a,b thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2018}\)Chứng minh:  \(\sqrt{a-2018}+\sqrt{b-2018}=\sqrt{a+b}\)Bài 2:Giải phương trình: \(x^2+2x+2x\sqrt{x+3}=9-\sqrt{x+3}\)Bài 3: a) Cho ba số nguyên a,b,c thỏa mãn bất điều kiện 0 < a,b,c < 1. Chứng...
Đọc tiếp

Bài 1:

a) Cho biểu thức A= \(\frac{5\sqrt{x}+4}{x-5\sqrt{x}+4}-\frac{3-2\sqrt{x}}{\sqrt{x}-4}+\frac{\sqrt{x}+2}{\sqrt{x}-1}\)

Tìm tất cả các giá trị của x để A < 1

b) Cho hai số dương a,b thỏa mãn \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2018}\)Chứng minh:

  \(\sqrt{a-2018}+\sqrt{b-2018}=\sqrt{a+b}\)

Bài 2:

Giải phương trình: \(x^2+2x+2x\sqrt{x+3}=9-\sqrt{x+3}\)

Bài 3: 

a) Cho ba số nguyên a,b,c thỏa mãn bất điều kiện 0 < a,b,c < 1. Chứng minh:

\(2a^3+2b^3+2c^3< 3+a^2b+b^2c+c^2a\)

b) Tìm tất cả bộ ba số nguyên tố (a;b;c) đôi một khác nhau thỏa mãn:

\(20abc< 30\left(ab+bc+ca\right)< 21abc\)

Bài 4:  Cho tam giác ABC có trung tuyến AM. Vẽ đường thẳng d cắt các cạnh AB, AC, và AM theo thứ tự E, F, N.

a) Chứng minh \(\frac{AB}{AE}+\frac{AC}{AF}=\frac{2AM}{AN}\)

b) Giả sử d // BC. Trên tia đối của tia FB lấy điểm K. Gọi P là giao điểm của KN và AB, Q là giao điểm của KM và AC. Chứng minh PQ // BC.

 

 

 

 

 

 

1
3 tháng 8 2020

huyen

24 tháng 8 2020

Ta viết lại bất đẳng thức cần chứng minh thành\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge6\)

Theo giả thiết, ta có a + b + c = 3 nên\(\sqrt{\frac{2\left(a+3\right)}{a+bc}}=\sqrt{\frac{2\left(a+a+b+c\right)}{a+bc}}=\sqrt{2\left(\frac{a+b}{a+bc}+\frac{a+c}{a+bc}\right)}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}\)(Áp dụng bất đẳng thức \(\sqrt{2\left(x+y\right)}\ge\sqrt{x}+\sqrt{y}\))

Hoàn toàn tương tự, ta được: \(\sqrt{\frac{2\left(b+3\right)}{b+ca}}\ge\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}\)\(\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Cộng theo vế ba bất đẳng thức trên, ta được: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\)\(\ge\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)

Áp dụng bất đẳng thức Bunyakovsky dạng phân thức, ta được: \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+b}{b+ca}}\ge\frac{4\sqrt{a+b}}{\sqrt{a+bc}+\sqrt{b+ca}}\ge\frac{2\sqrt{2}\sqrt{a+b}}{\sqrt{a+bc+b+ca}}=\frac{2\sqrt{2}}{\sqrt{c+1}}\)(*)

Tương tự ta có: \(\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{b+c}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{a+1}}\)(**) ; \(\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+a}{a+bc}}\ge\frac{2\sqrt{2}}{\sqrt{b+1}}\)(***)

Cộng theo vế ba bất đẳng thức (*), (**) và (***) suy ra \(\sqrt{\frac{a+b}{a+bc}}+\sqrt{\frac{a+c}{a+bc}}+\sqrt{\frac{b+a}{b+ca}}+\sqrt{\frac{b+c}{b+ca}}+\sqrt{\frac{c+a}{c+ab}}+\sqrt{\frac{c+b}{c+ab}}\)\(\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Do đó ta có: \(\sqrt{\frac{2\left(a+3\right)}{a+bc}}+\sqrt{\frac{2\left(b+3\right)}{b+ca}}+\sqrt{\frac{2\left(c+3\right)}{c+ab}}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\)

Phép chứng minh sẽ hoàn tất nếu ta chỉ ra được \(\frac{2\sqrt{2}}{\sqrt{c+1}}+\frac{2\sqrt{2}}{\sqrt{a+1}}+\frac{2\sqrt{2}}{\sqrt{b+1}}\ge6\)hay \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{3}{\sqrt{2}}\)

Thật vậy, áp dụng bất đẳng thức Cauchy – Schwarz ta được \(\frac{1}{\sqrt{c+1}}+\frac{1}{\sqrt{a+1}}+\frac{1}{\sqrt{b+1}}\ge\frac{9}{\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}}\ge\frac{9}{\sqrt{3\left(a+b+c+3\right)}}=\frac{3}{\sqrt{2}}\)

Vậy bất đẳng thức được chứng minh 

Đẳng thức xảy ra khi a = b = c = 1

1,

\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{a+b+c}{2}\ge\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\frac{2}{2}=1\left(Q.E.D\right)\)