Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất:
+ Nếu a > b và c là số dương thì ac > bc.
+ Nếu a > b > 0 thì a 2 > b 2 .
+ Nếu a > b > 0 , c > d > 0 thì ac > bd.
Do đó ba bất đẳng thức ở các phương án A, C, D đều đúng.
Bất đẳng thức ở phương án B không đúng, chẳng hạn 5>3,4>1 mà 5-4<3-1. Vậy đáp án là B.
Áp dụng tính chất: Nếu a > b và c > d thì a + c > b + d .
Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng. ( bỏ đi)
Đáp án là D.
Áp dụng tính chất: Nếu a > b và c > d thì a + c > b + d , từ đó suy ra a - d > b - c .
Có thể lấy ví dụ để thấy các bất đẳng thức còn lại không đúng. ( bỏ đi)
Đáp án là C.
Đáp án: C
A ∩ B = {b; d}; A ∩ C = {a; b}; B ∩ C = {b; e}
A \ B = {a; c}; A \ C = {c; d}; B \ C = {d}
A ∪ B = {a; b; c; d; e}; A ∪ C = {a; b; c; d; e}
A ∩ (B \ C) = {d}. (A ∩ B) \ (A ∩ C) = {d}.
A \ (B ∩ C) = {a; c; d}. (A \ B) ∪ (A \ C) = {a; c; d}.
(A \ B) ∩ (A \ C) = {c}.
a. A ∩ (B \ C) = (A ∩ B) \ (A ∩ C) ={d} ⇒ a đúng.
b. A \ (B ∩ C)= {a; c; d} (A \ B) ∩ (A \ C)={c} ⇒ b sai.
c. A ∩ (B \ C) ={d} (A \ B) ∩ (A \ C)={c} ⇒ c sai
d. A \ (B ∩C) = (A \ B) ∪ (A \ C)= {a; c; d} ⇒ d đúng.
A. \(\sin A = \sin \,(B + C)\)
Ta có: \((\widehat A + \widehat C) + \widehat B= {180^o}\)
\(\Rightarrow \sin \,(B + C) = \sin A\)
=> A đúng.
B. \(\cos A = \cos \,(B + C)\)
Sai vì \(\cos \,(B + C) = - \cos A\)
C. \(\;\cos A > 0\) Không đủ dữ kiện để kết luận.
Nếu \({0^o} < \widehat A < {90^o}\) thì \(\cos A > 0\)
Nếu \({90^o} < \widehat A < {180^o}\) thì \(\cos A < 0\)
D. \(\sin A\,\, \le 0\)
Ta có \(S = \frac{1}{2}bc.\sin A > 0\). Mà \(b,c > 0\)
\( \Rightarrow \sin A > 0\)
=> D sai.
Chọn A
Lời giải:
$a+2c> b+c$
$\Rightarrow a> b-c$
Không có cơ sở nào để xác định xem biểu BĐT nào đúng.
Nếu a> b >0 và c> d > 0 thì
* a+ c > b + d
* Từ a > b > 0 và c > 0 nên ac > bc (1)
Lại có c > d và b > 0 nên bc > bd (2)
Từ(1) và (2) suy ra: ac > bd.
* Ta có:
a b > b b = 1 ; d c < c c = 1 ⇒ a b > 1 > d c
Vậy khẳng định C sai.