K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 9 2024

Lời giải:

$A=n^4+3n^3+3n^2=n^2(n^2+3n+3)$

Để $A$ là scp thì $n^2+3n+3$ là scp.

Đặt $n^2+3n+3=x^2$ với $x$ tự nhiên.

$\Rightarrow 4n^2+12n+12=4x^2$

$\Rightarrow (2n+3)^2+3=4x^2$

$\Rightarrow 3=(2x)^2-(2n+3)^2=(2x-2n-3)(2x+2n+3)$

Đến đây là dạng PT tích cơ bản rồi. Bạn có thể tự xét TH để giải.

11 tháng 3 2015

Không trả lời thì thôi !!! Đừng có mà trả lời lung tung

27 tháng 5 2022

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

Đặt 2n+1=k\(^{^{}2}\) , 3n+1=p\(^{^{}2}\)

Từ cách đặt trên chuyển về pt: x\(^{^{}2}\) - 6y\(^{^{}2}\) = 3 (1) với x=3k, y=p
Xét pt Pell (I): x\(^{^{}2}\) - 6y\(^{^{}2}\) = 1. Nghiệm nhỏ nhất: (a,b) = (5,2)
Gọi (x',y') là nghiệm nhỏ nhất của pt (1)
Ta có y'\(^{^{}2}\) \(\le\) max { nb\(^{^{}2}\), \(\frac{-na^2}{d}\) } = max {12, -12,5} = 12 (n=3, d=6)

-> y' \(\le\) 3 (do y' nguyên dương) -> y' \(\in\) {1,2,3}
Thử trực tiếp, dễ thấy (x',y') = (3,1) thoả mãn
-> Pt (1) có dãy nghiệm:
\(x_0\) = 3, \(y_0\) = 1, \(x_{m+1}\) = 5\(x_{m}\) + 12\(y_{m}\) , \(y_{m+1}\) = 2\(x_{m}\) + 5\(y_{m}\)

-> \(k_0\) =1, \(p_0\) =1, \(k_{m+1}\) = 5\(k_{m}\) + 4\(p_{m}\) , \(p_{m+1}\) = 6\(k_{m}\) + 5\(p_{m}\)

Biến đổi, ta chuyển dãy về thành dãy (\(t_{m}\) ) được xác định qua công thức truy hồi sau:

\(t_1\) = 40, \(t_{m+1}\) = 49\(t_{m}\) + 20 + 20\(\sqrt{6t_{m^{}}^2+5t_{m}+1}\) (m nguyên dương)

Khi đó (\(t_{m}\)) vét hết tất cả các giá trị của n để 2n+1 và 3n+1 là số chính phương
=> Với mỗi m bất kì, ta tìm được một giá trị n thoả mãn.

30 tháng 1 2022

hello

1 tháng 7 2018

Mình ra rồi nhé bạn,chờ xíu mình C/M cho. Đang bấm giữa chừng thì tự nhiên lỡ tay bấm nút thoát :|

1 tháng 7 2018

\(2n+1=a^2\)

Xét a chẵn : \(a^2=\left(2k\right)^2=4k^2\)

\(2n+1=4k^2\Rightarrow2n=4k^2-1\)mà \(4k^2-1\)là số lẻ nên không tồn tại 2n lẻ 

Xét a lẻ : \(a^2=\left(2k+1\right)^2=4k^2+4k+1\)

\(\Rightarrow2n=4k^2+4k=k\left(4k+4\right)=4\left(k^2+k\right)\)là số chẵn 

\(\Rightarrow\)n là số chẵn 

Vì n là số chẵn nên 3a+1 là số lẻ 

\(\Rightarrow3n+1=\left(2p+1\right)^2\)

\(\Rightarrow2n+1+3n+1+1=\left(2k+1\right)^2+\left(2p+1\right)^2+1=5n+3\)

Xét \(2n+1< 3n+1\Leftrightarrow\left(2k+1\right)^2< \left(2p+1\right)^2\)

Vì cả \(2n+1\)và \(3n+1\)đều là số lẻ nên....(Bí)

AH
Akai Haruma
Giáo viên
9 tháng 9 2023

Lời giải:

Đặt tổng trên là $A$.

Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)

Xét $n\geq 2$. Khi đó:

$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$

$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$

Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.

Đặt $n=2k$ với $k$ nguyên dương.

Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý

Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.