Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tổng : A = 12 + 14 +16 + x với x thuộc N .tìm x để :
a) A chia hết cho2 b) A không chia hết cho 2
Ta có:A=12+14+16+x(x\(\in\)N)
12 chia hết cho 2
14 chia hết cho 2
16 chia hết cho 2
a)A chia hết cho 2
=>x chia hết cho 2
Hay x \(\in\)B(2)
Vậy A chia Hết cho 2 khi x\(\in\)B(2)
b)A không chia hết cho 2
=>x không chia hết cho 2
Hay x\(\notin\)B(2)
Vậy A không chia hết cho 2 khi x\(\notin\)B(2)
****************nha
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
Ta thấy
n(n + 1)(n + 2) là ba số tự nhiên liên tiếp
Ta có nhận xét:
Tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3
Tổng của hai số tự nhiên liên tiếp luôn chia hết cho 2
=> Tích của ba số tự nhiên liên tiếp luôn chia hết cho 1.2.3 = 6
=> đpcm
Với n là số nguyên
+ Ta thấy: \(n\) và \(n+1\) là 2 số nguyên liên tiếp
\(\rightarrow\) Có ít nhất 1 số chia hết cho 2
\(n.\left(n+1\right)⋮2\)
+ Ta thấy: \(n,n+1\) và \(n+2\) là 3 số nguyên liên tiếp
\(\rightarrow\)Có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3
Mà \(\left(2;3\right)=1\)
\(\rightarrow n.\left(n+1\right).\left(n+2\right)⋮2.3\)
hay \(n.\left(n+1\right).\left(n+2\right)⋮6\)
+ Ta thấy:\(n\) và \(n+1\) là 2 số nguyên liên tiếp
\(\rightarrow\) Có ít nhất 1 số chia hết cho 2
\(\rightarrow n.\left(n+1\right).\left(2n+1\right)⋮2\)
n(n+1)(n+2)(n+3)(n+4) là 5 số tự nhiên liên tiếp
=> Có một số chia hết cho 1; một số chia hết cho 2; một số chia hết cho 3 và một số chia hết cho 5
=> đpcm
n^3-n=n(n-1)(n+1) là tích 3 số nguyên liên tiếp
=>tồn tại 1 bội của 3 =>n(n-1)(n+1) chia hết cho 3
=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2
mà (2;3)=1=>n(n-1)(n+1)chia hết cho 6
hay n^3-n chia hết cho 6
n^5-n=n(n-1)(n+1)(n^2+1)
=n(n-1)(n+1)(n^2-4+5)
=n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)
n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp
=>tồn tại 1 bội của 5 =>n(n-1)(n+1) chia hết cho 5
=>tồn tại ít nhất2 bội của 2 =>n(n-1)(n+1) chia hết cho 2
mà (2;5)=1=>n(n-1)(n+1)(n-2)(n+2) chia hết cho 10
n(n-1)(n+1) là tích 3 số nguyên liên tiếp
=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2
=>5n(n-1)(n+1) chia hết cho 10
=>n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)chia hết cho 10
hay n^5-n chia hết cho 10
Lời giải:
Ta thấy: $n^2+n=n(n+1)$ là tích của 2 số nguyên liên tiếp. Trong 2 số nguyên liên tiếp luôn có 1 số chẵn và 1 số lẻ nên $n^2+n=n(n+1)\vdots 2$
Ta có đpcm.