K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:
Ta thấy: $n^2+n=n(n+1)$ là tích của 2 số nguyên liên tiếp. Trong 2 số nguyên liên tiếp luôn có 1 số chẵn và 1 số lẻ nên $n^2+n=n(n+1)\vdots 2$

Ta có đpcm.

a,x chia hết cho 2

b,x không chia hết cho 2

25 tháng 9 2015

Ta có:A=12+14+16+x(x\(\in\)N)

12 chia hết cho 2

14 chia hết cho 2

16 chia hết cho 2

a)A chia hết cho 2

=>x chia hết cho 2

Hay x \(\in\)B(2)

Vậy A chia Hết cho 2 khi x\(\in\)B(2)

b)A không chia hết cho 2

=>x không chia hết cho 2

Hay x\(\notin\)B(2)

Vậy A không chia hết cho 2 khi x\(\notin\)B(2)

****************nha

9 tháng 2 2018

a) (n mũ 2+n) chia hết cho 2 

=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2

9 tháng 2 2018

\(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số nguyên liên tiếp nên chia hết cho 2 => đpcm

8 tháng 1 2020

Ta thấy

n(n + 1)(n + 2) là ba số tự nhiên liên tiếp

Ta có nhận xét:

Tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3

Tổng của hai số tự nhiên liên tiếp luôn chia hết cho 2

=> Tích của ba số tự nhiên liên tiếp luôn chia hết cho 1.2.3 = 6

=> đpcm

8 tháng 1 2020

Với n là số nguyên

+ Ta thấy: \(n\)\(n+1\) là 2 số nguyên liên tiếp

\(\rightarrow\) Có ít nhất 1 số chia hết cho 2

\(n.\left(n+1\right)⋮2\)

+ Ta thấy: \(n,n+1\)\(n+2\) là 3 số nguyên liên tiếp

\(\rightarrow\)Có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3

\(\left(2;3\right)=1\)

\(\rightarrow n.\left(n+1\right).\left(n+2\right)⋮2.3\)

hay \(n.\left(n+1\right).\left(n+2\right)⋮6\)

+ Ta thấy:\(n\)\(n+1\) là 2 số nguyên liên tiếp

\(\rightarrow\) Có ít nhất 1 số chia hết cho 2

\(\rightarrow n.\left(n+1\right).\left(2n+1\right)⋮2\)

4 tháng 11 2017

n(n+1)(n+2)(n+3)(n+4) là 5 số tự nhiên liên tiếp

=> Có một số chia hết cho 1; một số chia hết cho 2; một số chia hết cho 3 và một số chia hết cho 5

=> đpcm

3 tháng 2 2018

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

3 tháng 2 2018

dài quá ko mún làm

3 tháng 8 2015

n^3-n=n(n-1)(n+1) là tích 3 số nguyên liên tiếp

=>tồn tại 1 bội của 3 =>n(n-1)(n+1) chia hết cho 3

=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2

mà (2;3)=1=>n(n-1)(n+1)chia hết cho 6

hay n^3-n chia hết cho 6

n^5-n=n(n-1)(n+1)(n^2+1)

=n(n-1)(n+1)(n^2-4+5)

=n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)

n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp

=>tồn tại 1 bội của 5 =>n(n-1)(n+1) chia hết cho 5

=>tồn tại ít nhất2 bội của 2 =>n(n-1)(n+1) chia hết cho 2

mà (2;5)=1=>n(n-1)(n+1)(n-2)(n+2) chia hết cho 10

n(n-1)(n+1) là tích 3 số nguyên liên tiếp

=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2

=>5n(n-1)(n+1) chia hết cho 10

=>n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)chia hết cho 10

hay n^5-n chia hết cho 10