K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2018

Đặt A = (n^2 - 1)n^2(n^2 + 1)

* Vì A là tích của ba số tự nhiên liên tiếp nên A chia hết cho 3

** Vì A là tích của ba số tự nhiên liên tiếp nên A có ít nhất một số chẵn là n^2 => n chia hết cho 2 => n^2 chia hết cho 4 => A chia hết cho 4

Nếu n^2 - 1 chẵn thì n^2 + 1 cũng chẵn nên (n^2 - 1)(n^2 + 1) chia hết cho 4 => A chi hết cho 4

*** Nếu n chia hết cho 5 => n^2 chia hết cho 5 => A chia hết cho 5

     Nếu n ko chia hết cho 5 => n^2 chia 5 dư 1,4 

+ Nếu n^2 chia 5 dư 1 => n^2 - 1 chia hết cho 5 => A chia hết cho 5

+ Nếu n^2 chia 5 dư 4 => n^2 + 1 chia hết cho 5 => A chia hết cho 5

Vậy A chia hết cho 3,4,5 

Mà (3,4,5) = 1 => A chia hết cho (3.4.5) = 60

Ta đc đpcm

28 tháng 8 2018

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

3 tháng 8 2016

\(a,n^5-n=n.\left(n^4-1\right)=n.\left(n^2-1\right).\left(n^2+1\right)\)

\(=n.\left(n^2-1\right).\left(n^2-4+5\right)\)

\(=n.\left(n^2-1\right).\left(n^2-4\right)+5n.\left(n^2-1\right)\)

\(=n.\left(n-1\right).\left(n+1\right).\left(n-2\right).\left(n+2\right)+5n.\left(n-1\right).\left(n+1\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)

Vì (n-1).n.(n+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 2 và 3

Mà (2;3)=1=>(n-1).n.(n+1) chia hết cho 6

=>5.(n-1).n.(n+1) chia hết cho (5.6)=30  (1)

Vì (n-2).(n-1).n.(n+1).(n+2) là tích của 5 số nguyên liên tiếp nên chia hết cho 5 và 6

Mà (5;6)=1=> (n-2).(n-1).n.(n+1).(n+2) chia hết cho 30  (2)

Từ (1);(2)=> (n-2).(n-1).n.(n+1).(n+2)+5(n-1).n.(n+1) chia hết cho 30

=>n5-n chia hết cho 30 (đpcm)

\(b,\left(n^2+n-1\right)^2-1=\left(n^2+n-1-1\right).\left(n^2+n-1+1\right)\)

\(=\left(n^2+n-2\right).\left(n^2+n\right)=\left(n^2+2n-n-2\right).n.\left(n+1\right)\)

\(=\left[n\left(n+2\right)-\left(n+2\right)\right].n.\left(n+1\right)=\left(n+2\right)\left(n-1\right).n.\left(n+1\right)\)

\(=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)

Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp mà trong 4 số nguyên liên tiếp cũng có 3 số nguyên liên tiếp

=>(n-1).n.(n+1).(n+2) chia hết cho 3 (3)

Vì (n-1).n.(n+1).(n+2) là tích 4 số nguyên liên tiếp nên chia hết cho 8 (4)

Từ (3);(4);lại có (3;8)=1

=>(n-1).n.(n+1).(n+2) chia hết cho 24

=>(n2+n-1)2-1 chia hết cho 24 (đpcm)

17 tháng 5 2016

Ta co: 2n-1 chia het cho 7 nen 2n-1+2 se chia 7 du 2

=> 2n+1 khong chia het cho 7

18 tháng 7 2017

n=6 bn nhe

k cho mk vs

7 tháng 1 2016

khong cao thu nao biet lam sao

 

10 tháng 6 2016

\(A=2n^3+n^2+7n+1=2n^3-n^2+2n^2-n+8n-4+5\)

\(=n^2\left(2n-1\right)+n\left(2n-1\right)+4\left(2n-1\right)+5=\left(2n-1\right)\left(n^2+n+4\right)+5\)

A chia hết cho (2n-1) <=> 5 chia hết cho (2n-1) hay (2n-1) là ước của 5.

Ước của 5 là: -5;-1;1;5, lần lượt thay vào ta có:

  • 2n-1=-5 => n=-2
  • 2n-1=-1 => n = 0
  • 2n-1=1 => n =1
  • 2n-1=5 => n = 3

Vậy có 4 giá trị nguyên của n là {-2;0;1;3} để \(A=2n^3+n^2+7n+1\)chia hết cho \(2n-1\).