Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
` ĐK:(-5)/(x^{2}+6)>=0`
Vì `-5<0` và `x^{2}+6>0`
`->(-5)/(x^{2}+6)<0`
Vậy căn thức trên không tồn tại, không có giá trị của `x` thỏa mãn
Để \(\sqrt{\dfrac{1}{3-2x}}\) có nghĩa
Khi\(\dfrac{1}{3-2x}\ge0\)
\(\Leftrightarrow3-2x>0\)
\(\Leftrightarrow-2x< -3\)
\(\Leftrightarrow x>\dfrac{3}{2}\)
Để căn thức có nghĩa thì:
\(\sqrt{\dfrac{1}{-1+x}}>0\) và \(-1+x\ne0\)
\(\Leftrightarrow x>1\)
\(ĐKXĐ\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\) ( Tử và mẫu cùng dấu )
Mà 1 > 0 \(\Rightarrow-1+x>0\)
\(\Leftrightarrow\) \(x>1\)
Vì `2>0` và `x^{2}>0` ( Với `x\ne0` )
`->(2)/(x^{2})>0`
Vậy với mọi giá trị của `x` thì căn thức đều có nghĩa ( `x\ne0` )
a, x-2 khác 0 suy ra x khác 2
x-2 lớn hơn hoặc bằng 0 suy ra x lớn hơn hoặc bằng2
Nên x lớn hơn 2
b, x+2 \(\ne\)0 \(\Rightarrow\)x\(\ne\)-2
x-2 \(\ge\)0 \(\Rightarrow\)x \(\ge\)2
Vậy x\(\ge\)2
\(\sqrt{-\left|x+5\right|}\)có nghĩa khi và chỉ khi \(-\left|x+5\right|\ge0\Leftrightarrow\left|x+5\right|\le0\)
Mà\(\left|x+5\right|\)là không âm nên đề bài thỏa mãn khi và chỉ khi \(\left|x+5\right|=0\Leftrightarrow x=-5\)
Để \(\sqrt{\dfrac{2+x}{5-x}}\) có nghĩa
<=> \(\dfrac{2+x}{5-x}\ge0\)
<=> (2+x)(5-x) \(\ge0\) và 5-x\(\ne\)0
<=> \(\left[{}\begin{matrix}x\le-2\\x\ge5\end{matrix}\right.\) và x\(\ne\)5
<=> \(\left[{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\)
cái này bạn để ý có 2 mốc là -2 và 5, trái dấu thì trong khoảng, cùng dấu thì ngoài khoảng
ĐKXĐ: \(-2\le x< 5\)