\(\sqrt{\dfrac{1}{-1+x}}\)

Đề bài là với giá trị nào của x thì mỗi căn thức sau...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2021

Để căn thức có nghĩa thì:

\(\sqrt{\dfrac{1}{-1+x}}>0\) và \(-1+x\ne0\)

\(\Leftrightarrow x>1\)

22 tháng 8 2021

\(ĐKXĐ\left\{{}\begin{matrix}\dfrac{1}{-1+x}\ge0\\-1+x\ne0\end{matrix}\right.\)   ( Tử và mẫu cùng dấu )

   Mà 1 > 0 \(\Rightarrow-1+x>0\)

                  \(\Leftrightarrow\)          \(x>1\)

 

 

22 tháng 8 2021

Để \(\sqrt{\dfrac{1}{3-2x}}\) có nghĩa

Khi\(\dfrac{1}{3-2x}\ge0\)

\(\Leftrightarrow3-2x>0\)

\(\Leftrightarrow-2x< -3\)

\(\Leftrightarrow x>\dfrac{3}{2}\)

22 tháng 8 2021

undefined

22 tháng 8 2021

Vì `2>0` và `x^{2}>0` ( Với `x\ne0` )

`->(2)/(x^{2})>0`

Vậy với mọi giá trị của `x` thì căn thức đều có nghĩa ( `x\ne0` )

ĐKXĐ: \(x\ne0\)

22 tháng 8 2021

Để \(\sqrt{\dfrac{2+x}{5-x}}\) có nghĩa

<=> \(\dfrac{2+x}{5-x}\ge0\)

<=> (2+x)(5-x) \(\ge0\) và 5-x\(\ne\)

<=> \(\left[{}\begin{matrix}x\le-2\\x\ge5\end{matrix}\right.\) và x\(\ne\)5

<=> \(\left[{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\)

cái này bạn để ý có 2 mốc là -2 và 5, trái dấu thì trong khoảng, cùng dấu thì ngoài khoảng

ĐKXĐ: \(-2\le x< 5\)

22 tháng 8 2021

` ĐK:(-5)/(x^{2}+6)>=0`

Vì `-5<0` và `x^{2}+6>0`

`->(-5)/(x^{2}+6)<0`

Vậy căn thức trên không tồn tại, không có giá trị của `x` thỏa mãn

ĐKXĐ: \(x\in\varnothing\)

r: ĐKXĐ: \(x\ge-2\)

\(\sqrt{x-2\sqrt{x-1}}=\sqrt{x-1-2\sqrt{x-1}+1}=\sqrt{\left(\sqrt{x-1}-1\right)^2}\) luôn xđ với mọi x

các câu còn lại tương tự

7 tháng 7 2017

??/

tui mới học lớp 7 mà

....

10 tháng 9 2021

B)  luôn có nghĩa với bất kì giá trị nào của X ;   X E R

A) luôn có nghĩa với bất kì giá trị nào của X ;   X E R