Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n chỉ có hai ước nguyên tố nên ta đặt \(n=a^xb^y\) (a, b là số nguyên tố; a, y khác 0)
Khi đó \(n^2=a^{2x}b^{2y}\)
Số ước của n2 là: \(\left(2x+1\right)\left(2y+1\right)=35\Rightarrow\orbr{\begin{cases}x=2,y=3\\x=3,y=2\end{cases}}\)
Vai trò số mũ của x và y như nhau nên ta chỉ cần xét một trường hợp: x = 2, y = 3
Khi đó \(n=a^2b^3\Rightarrow n^4=a^8b^{12}\)
Vậy số ước của n4 là: (8 + 1)(12 + 1) = 117 (ước)
ta có :
\(B^2=a^{2x}b^{2y}\) sẽ có số ước là : \(\left(2x+1\right)\left(2y+1\right)=15\Rightarrow\orbr{\begin{cases}2x+1=3\\2x+1=5\end{cases}}\)
thế nên hoặc x= 1 hoặc x = 2. tương ứng ta có y= 2 hoặc y = 1
vậy \(B^3\) sẽ có số ước là : \(\left(3\times1+1\right)\left(3\times2+1\right)=28\text{ ước}\)