K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

Ta có : 
n^2 là một số chính phương 
=> n^2-7 thuộc {-6;-3;2;9;18;29;.....} 
=> n thuộc { 1;-1;2;-2;3;-3;-4;4;-5;5;..........} 
=> n+3 thuộc { 4;2;5;1;6;0;..........} 
mà trong cách này thì có n^2-7=2 và n+3 = 6 
mà 6 chia hết cho 2 và 0 chia hết cho 29 
=> n = 3;-3 
Bài này thì 100% là 3 và -3 luôn 
vì n+3 không thể lớn hơn n^2-7

8 tháng 10 2022

n:2:2n= nhiêu 

16 tháng 3 2020

a) Ta có: \(n^2+3=\left(n^2-1\right)+4=\left(n+1\right).\left(n-1\right)+4\)

- Để \(n^2+3⋮n+1\)\(\Leftrightarrow\)\(\left(n+1\right).\left(n-1\right)+4⋮n+1\)mà \(\left(n+1\right).\left(n-1\right)⋮n+1\)

\(\Rightarrow\)\(4⋮n+1\)\(\Rightarrow\)\(n+1\inƯ\left(4\right)\in\left\{\pm1;\pm2;\pm4\right\}\)

- Ta có bảng giá trị:

\(n+1\)\(-1\)\(1\)\(-2\)\(2\)\(-4\)\(4\)
\(n\)\(-2\)\(0\)\(-3\)\(1\)\(-5\)\(3\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)\(\left(TM\right)\)

Vậy \(n\in\left\{-5,-3,-2,0,1,3\right\}\)

b) Để \(n-1⋮3n-1\)\(\Leftrightarrow\)\(3.\left(n-1\right)⋮3n-1\)

- Ta có: \(3.\left(n-1\right)=3n-3=\left(3n-1\right)-2\)

- Để \(3.\left(n-1\right)⋮3n-1\)\(\Leftrightarrow\)\(\left(3n-1\right)-2⋮3n-1\)mà \(3n-1⋮3n-1\)

\(\Rightarrow\)\(2⋮3n-1\)\(\Rightarrow\)\(3n-1\inƯ\left(2\right)\in\left\{\pm1;\pm2\right\}\)

- Ta có bảng giá trị:

\(3n-1\)\(-1\)\(1\)\(-2\)\(2\)
\(n\)\(0\)\(\frac{2}{3}\)\(-\frac{1}{3}\)\(1\)
 \(\left(TM\right)\)\(\left(L\right)\)\(\left(L\right)\)\(\left(TM\right)\)

Vậy \(x\in\left\{0,1\right\}\)

c) Để \(n-5⋮n^2+3\)\(\Rightarrow\)\(\left(n-5\right).\left(n+5\right)⋮n^2+3\)

- Ta có: \(\left(n-5\right).\left(n+5\right)=n^2-25=\left(n^2+3\right)-28\)

- Để \(\left(n-5\right).\left(n+5\right)⋮n^2+3\)\(\Leftrightarrow\)\(\left(n^2+3\right)-28⋮n^2+3\)mà \(n^2+3⋮n^2+3\)

\(\Rightarrow\)\(28⋮n^2+3\)\(\Rightarrow\)\(n^2+3\inƯ\left(28\right)\in\left\{\pm1;\pm2;\pm4;\pm7;\pm14;\pm28\right\}\)

Vì \(n^2+3\ge3\forall n\)\(\Rightarrow\)\(n^2+3\in\left\{4;7;14;28\right\}\)

- Ta có bảng giá trị:

\(n^2+3\)\(4\)\(7\)\(14\)\(28\)
\(n\)\(\pm1\)\(\pm2\)\(\pm\sqrt{11}\)\(\pm5\)
 \(\left(TM\right)\)\(\left(TM\right)\)\(\left(L\right)\)\(\left(TM\right)\)

- Thử lại 

+ Với \(n=-1\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=-1-5=-6\\n^2+3=\left(-1\right)^2+3=4\end{cases}}\)mà \(-6⋮̸4\)

\(\Rightarrow\)\(n=-1\left(L\right)\)

+ Với \(n=1\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=1-5=-4\\n^2+3=1^2+3=4\end{cases}}\)mà \(-4⋮4\)

\(\Rightarrow\)\(n=1\left(TM\right)\)

+ Với \(n=-2\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=-2-5=-7\\n^2+3=\left(-2\right)^2+3=7\end{cases}}\)mà \(-7⋮7\)

\(\Rightarrow\)\(n=-2\left(TM\right)\)

+ Với \(n=2\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=2-5=-3\\n^2+3=2^2+3=7\end{cases}}\)mà \(-3⋮̸7\)

\(\Rightarrow\)\(n=2\left(L\right)\)

+ Với \(n=-5\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=-5-5=-10\\n^2+3=\left(-5\right)^2+3=28\end{cases}}\)mà \(-10⋮28\)

\(\Rightarrow\)\(n=-5\left(L\right)\)

+ Với \(n=5\)\(\Rightarrow\)\(\hept{\begin{cases}n-5=5-5=0\\n^2+3=5^2+3=28\end{cases}}\)mà \(0⋮28\)

\(\Rightarrow\)\(n=5\left(TM\right)\)

 Vậy \(n\in\left\{-2,1,5\right\}\)

- Để mình chú thích:

1. TM là thỏa mãn

2. Phần c mình thử lại là mình đã làm "Vượt trội" nó lên 

18 tháng 3 2020

cảm ơn nhiều

6 tháng 1 2016

xin lỗi bạn mình không biết

2 tháng 10 2016

a)

Ta có :A=275=27.27.27.27.27                                                 Ta có :B=2433=243.243.243

               =(3.3.3).(3.3.3)...(3.3.3)(có 5 nhóm)                                      =(3.3.3.3.3).(3.3.3.3.3)...(3.3.3.3.3)(có 3 nhóm)

               =3.3.3.3.3...3(15 thừa số 3)                                                 =3.3.3.3.3...3.3(có 15 thừa số 3)

               =315                                                                                                               =315

Mà315=315

Nên 275=2433

=>A=B

b)Ta có:A=85=8.8.8.8.8                                                            B=27

               =(2.2.2).(2.2.2)...(2.2.2)(có 5 nhóm)

               =2.2.2.2.2.2..2(có 15 thừ số 2)

Mà 215>27

Nên 85>27

=>A>B

c)(bạn tự tìm người giải ,mình bó)

d)A=1+2+22+23+24+..+21999                                                                                               B=22000

 2.A=2.(1+2+22+23+...+21999)

2.A=2+22+23+24+...+21999+22000

Ta có:2.A-A=(2+22+23+24+...+22000) - (1+2+22+23+...+21999)

      A=22000-1

Mà  22000-1<22000

Nên A<B

Câu2:

A=4+42+43+44+...+460

4.A=4.(4+42+43+...+460)

4.A=42+43+44+...+460+461

4.A-4=(42+43+44+...+461)-(4+42+43+...+460)

A=\(\frac{4^{61}-4}{3}\)

bài 3 thì mình quên cách làm rồi để mai mình xem vở chỉ cho

11 tháng 5 2021

a, 

$5^5-5^4+5^3$

$=5^3(5^2-5+1)$

$=5^3 . 21$

Mà $21 \vdots 7$

$\to 5^3 . 21 \vdots 7$

Nên $5^5-5^4+5^3 \vdots 7$ ( đpcm)

11 tháng 5 2021

a) 55 - 54 + 53 = 53 ( 52 - 5 + 1)

                       = 53 . 21

Mà 21 chia hết cho 7 nên 53 . 21 chia hết cho 7

b) 76 + 75 - 74 = 74( 72 + 7 -1)

                       = 74 . 55

Mà 55 chia hết cho 11 nên 74 . 55 chia hết cho 11

Ý c tương tự như trên nhé!!

d) 106 - 5= (2.5)- 57

                 = 26 . 56 - 57

                 = 5( 26 - 5)

                 = 56 . 59 chia hết cho 59

e) 3n+2 - 2n+2 + 3n - 2Bạn viết sai nên mik sửa như này nha)

= 3n . 32 - 2n . 22 + 3n - 2

= ( 3n . 32 + 3n) - (2. 22 + 2)

= 3n( 32 + 1) - 2n ( 22 + 1)

= 3n . 10 - 2. 5

Ta thấy 10 chia hết cho 10 nên 3n . 10 chia hết cho 10     (1)

          2 . 5 chia hết cho 10 nên 2n . 5 chia hết cho 10      (2)

Từ (1) và (2) => 3n . 10 - 2n .5 chia hết cho  10 với mọi n thuộc N*

vậy.......

f) 817 - 279 - 913

= (34)7 - ( 33)9 - (32)13

= 328 - 327 - 326

(đến đây làm tương tự ý a với ý b nhé)

Mik thấy lần sau nếu ý nào k làm đc bạn mới hỏi nhé hoặc k biết làm hết thì hỏi từng ý 1 thôi chứ bn hỏi nhiều như này người ta ngại trả lời lắm, mik cũng ngại nữa. 

Nãy giờ mik viết mỏi tay mỏi mắt lắm rồi bn nhớ k cho mik nhé!!!

13 tháng 10 2017

\(B=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{97}+2^{98}+2^{99}\right)\)

\(=2\left(1+2+2^2\right)+2^4\left(1+2+4\right)+...+2^{96}\left(1+2+2^2\right)\)

\(=7\left(1+2^4+2^8+...+2^{96}\right)⋮7\)