Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(m-2\right)^2\ge0\forall x\Rightarrow PT\) luôn có 2 nghiệm \(x1;x2\)
\(P=\left(x_1+x_2\right)^2-2x_1x_2-4\left(x_1+x_2\right)\)
Theo viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=m-1\end{matrix}\right.\) thay vào \(P:P=m^2-2\left(m-1\right)+4m=m^2+2m+2\)
\(=\left(m+1\right)^2+1\ge1\) Dấu "=" xảy ra \(\Leftrightarrow m=-1\)
a) \(\Delta'=m^2+1>0\forall m\)
Vậy nên phương trình luôn có 2 nghiệm phân biệt.
b) Theo định lý Viet ta có:
\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=-1\end{cases}}\)
Vậy thì \(x_1^2+x_2^2-x_1.x_2=\left(x_1+x_2\right)^2-2x_1.x_2-x_1.x_2\)
\(=\left(x_1+x_2\right)^2-3x_1.x_2\)
\(=\left(2m\right)^2-3.\left(-1\right)=4m^2+3\)
Để \(x_1^2+x_2^2-x_1.x_2=7\) thì \(4m^2+3=7\Leftrightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)
KL.
a, Có : denta = b^2 - 4ac = (-2)^2 - 4.1.(-1) = 8
denta > 0 => pt luôn có 2 nghiệm phân biệt
Vậy pt luôn có 2 nghiệm phân biệt
Tk mk nha
\(\Delta=m^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\) \(\forall m\)
\(\Rightarrow\) pt luôn có 2 nghiệm pb với mọi m
Khi đó, theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\frac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\)
\(\Leftrightarrow\frac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Leftrightarrow\frac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Leftrightarrow\left(m-2\right)^2-2m^2+4\left(m-2\right)+4=4\left(m-2-m+1\right)\)
\(\Leftrightarrow-m^2=-4\)
\(\Rightarrow m=\pm2\)
\(x^2-2\left(m-1\right)x-2m=0\)
\(\text{Δ}=\left(-2m+2\right)^2-4\cdot1\cdot\left(-2m\right)\)
\(=4m^2-8m+4+8m=4m^2+4>=4>0\forall m\)
=>Phương trình luôn có hai nghiệm phân biệt
a) \(\Delta'=m^2-\left(m-4\right)=m^2-m+4=m^2-2.m.\frac{1}{2}+\frac{1}{4}+\frac{15}{4}\)
\(=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0;\forall m\)
=> phương trình (1) luôn có hai nghiệm phân biệt với mọi m
b) Áp dụng định lí Viet ta có:
\(x_1.x_2=m-4\)
\(x_1+x_2=-2m\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=\left(-2m\right)^2-2\left(m-4\right)=4m^2-2m+8\)
=> \(x_1^3+x_2^3=\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)=\left(-2m\right)\left(4m^2-2m+8-\left(m-4\right)\right)\)
\(=-2m\left(4m^2-3m+12\right)\)
Theo bài ra ta có:
\(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1.x_2}\)
Thay vào ta có:
\(-2m=\frac{-2m\left(4m^2-3m+12\right)}{m-4}\)( đk m khác 4)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m-4=4m^2-3m+12\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\left(tm\right)\\4m^2-4m+16=0\left(l\right)\end{cases}\Leftrightarrow m=0}\)
Vì \(4m^2-4m+16=\left(2m-1\right)^2+15>0\) với mọi m
Vậy m =0
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
1:Phương trình luôn có nghiệm với mọi m<>0
Sửa đề: Chứng minh
TH1: m=0
Phương trình sẽ trở thành \(0x^2-2\left(0+1\right)x+1-3\cdot0=0\)
=>1=0(vô lý)
TH2: m<>0
\(\Delta=\left[-2\left(m+1\right)\right]^2-4\cdot m\cdot\left(1-3m\right)\)
\(=4\left(m+1\right)^2-4m+12m^2\)
\(=4m^2+8m+4-4m+12m^2\)
\(=16m^2+4m+4\)
\(=16\left(m^2+\dfrac{1}{4}m+\dfrac{1}{4}\right)\)
\(=16\left(m^2+2\cdot m\cdot\dfrac{1}{8}+\dfrac{1}{64}+\dfrac{15}{64}\right)\)
\(=16\left(m+\dfrac{1}{8}\right)^2+\dfrac{15}{4}>=\dfrac{15}{4}>0\forall m\)
=>Phương trình luôn có nghiệm với mọi m<>0
2: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m+1\right)\right]}{m}=\dfrac{2m+2}{m}\\x_1x_2=\dfrac{c}{a}=\dfrac{1-3m}{m}\end{matrix}\right.\)
\(x_1^2+x_2^2\)
\(=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(\dfrac{2m+2}{m}\right)^2-2\cdot\dfrac{1-3m}{m}\)
\(=\dfrac{4m^2+8m+4}{m^2}+\dfrac{6m-2}{m}\)
\(=\dfrac{4m^2+8m+4+6m^2-2m}{m^2}\)
\(=\dfrac{10m^2+6m+4}{m^2}\)
\(=10+\dfrac{6}{m}+\dfrac{4}{m^2}\)
\(=\left(\dfrac{2}{m}\right)^2+2\cdot\dfrac{2}{m}\cdot1,5+2,25+7,75\)
\(=\left(\dfrac{2}{m}+1,5\right)^2+7,75>=7,75\forall m\ne0\)
Dấu '=' xảy ra khi \(\dfrac{2}{m}+1,5=0\)
=>\(\dfrac{2}{m}=-1,5\)
=>\(m=-\dfrac{2}{1,5}=-\dfrac{4}{3}\)
Với \(m=0\) pt có nghiệm
Với \(m\ne0\)
\(\Delta'=\left(m+1\right)^2-m\left(1-3m\right)=4m^2+m+1=\left(m+\dfrac{1}{8}\right)^2+\dfrac{15}{16}>0;\forall m\)
Pt luôn có nghiệm với mọi m
b. Câu này chắc đề đúng là "với m khác 0"
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{m}\\x_1x_2=\dfrac{1-3m}{m}\end{matrix}\right.\)
\(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\dfrac{4\left(m+1\right)^2}{m^2}-\dfrac{2\left(1-3m\right)}{m}\)
\(=\dfrac{10m^2+6m+4}{m^2}=\dfrac{4}{m^2}+\dfrac{6}{m}+10\)
\(=4\left(\dfrac{1}{m}+\dfrac{3}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)
Dấu "=" xảy ra khi \(m=-\dfrac{4}{3}\)