Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
+ \(\omega = \frac{2\pi}{T} = \frac{2\pi}{2} = \pi\) (rad/s)
+ Nhận xét: Trong 2s = 1T, vật đi quãng đường 4.A = 40 cm, \(\Rightarrow\) A=10cm.
+ t = 0, vật qua VTCB theo chiều dương \(\Rightarrow\left\{ \begin{array}{} x_0 = 0\ cm\\ v_0 >0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 0\ \\ \sin \varphi <0 \end{array} \right. \Rightarrow \varphi = -\frac{\pi}{2}\)
Vậy phương trình: \(x = 10cos(\pi t -\frac{\pi}{2})\) (cm)
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
Biểu diễn dao động điều hòa bằng véc tơ quay, trong thời gian T/4, véc tơ quay một góc 360/4 = 900.
Quãng đường lớn nhất khi vật có tốc độ trung bình lớn nhất --> vật chuyển động quanh VTCB từ góc 450trái đến 450 phải.
A -A 45 45 M N
\(S_{max}=MN=2.A\cos45^0=A\sqrt{2}\)
Phương trình tổng quát: \(x = A\cos(\omega t +\varphi)\)
+ Quãng đường khi vật thực hiện 5 dao động: S = 5.4A = 100 cm \(\Rightarrow\) A = 5cm.
+ Tần số: f = 5/2 = 2,5 Hz \(\Rightarrow \omega = 2\pi f = 2\pi.2,5 = 5\pi \ (rad/s)\)
+ t= 0 khi vật có x0=5 nên vật đang ở biên độ dương \(\Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x=5\cos(5\pi t) \ (cm)\)
Phương trình tổng quát: x = \(A\cos(\omega t+\varphi)\)
+ Tần số: f= 120/60 = 2 Hz \(\Rightarrow \omega = 2\pi f = 2\pi .2 = 4\pi\) (rad/s)
+ Biên độ: A = 40/4 = 10 (cm) (1 chu kì vật đi quãng đường là 4A)
t=0, vật có li độ dương, chiều hướng về VTCB, nên v0<0.
\(\Rightarrow\left\{ \begin{array}{} x_0 = 5\ cm\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 5/10=0,5\ \\ \sin \varphi > 0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Vậy phương trình: \(x=10\cos(4\pi t +\frac{\pi}{3})\)
Tốc độ trung bình của vật là \(v = \frac{\text{quãng đường đi được}}{t}\)
(chú ý là tốc độ trung bình khác với vận tốc trung bình vì vận tốc trung bình = \(\frac{x_{cuoi}-x_{dau}}{t}\))
Dùng đường tròn để tìm quãng đường và thời gian đi
4 -4 2 3 2 3 - M N a π/6 π/6 H K
Vật đi được từ điểm N (\(x = -2\sqrt{3}\) hường theo chiều dương của trục x) đến điểm M (\(x = 2\sqrt{3}\) hướng theo chiều dương của trục x) tức là ứng với cung \(\stackrel\frown{NaM}\)
Quãng đường đi được là: \(S = HK= 2\sqrt{3}+ 2\sqrt{3} = 4\sqrt{3}cm.\)
Thời gian đi \(t = \frac{\varphi}{\omega} = \frac{\pi/3+\pi/3}{8\pi} = \frac{1}{12}s.\)
Vận tốc trung bình là \(v = \frac{4\sqrt{3}}{1/12} = 48 \sqrt{3}cm/s.\)
Chọn đáp án. D
Làm sao biết được là pi/6 vậy ạ. C chỉ giúp mình được không ạ?
Biên độ: A = 16/4 = 4cm.
Biểu diễn dao động điều hòa bằng véc tơ quay. Khi vật đi từ x1 đến x2 thì véc tơ quay một góc là:
\(30+60=90^0\)
Thời gian tương ứng: \(\frac{90}{360}T=\frac{1}{4}.0,4=0,1s\)
Tốc độ trung bình: \(v_{TB}=\frac{S}{t}=\frac{2+2\sqrt{3}}{0,1}=54,64\)(cm/s)
Biên độ dao động: A = 5cm.
Quãng đường vật đi trong một chu kì: 4A = 4.5 = 20cm.
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
+ \(\omega = 2\pi f = 2\pi .10 = 20\pi \ (rad/s) \)
+ A = 4cm.
+ t = 0, vật qua x0 = A \(\Rightarrow\left\{ \begin{array}{} x_0 = 4\ cm\\ v_0 =0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = 1\ cm\\ \sin \varphi = 0 \end{array} \right. \Rightarrow \varphi = 0\)
Vậy phương trình dao động: \(x = 4\cos(20\pi t) \ (cm)\)
30 10 -10 M N
Vật cách VTCB không quá 10cm, suy ra:|x|<10cm
Vị trí đó được biểu diễn như véc tơ quay trên hình vẽ.
1/3 chu kỳ, véc tơ quay 1/3 * 360 = 1200
Như vậy, mỗi góc nhỏ là 300 như hình vẽ, suy ra biên độ là 2.10 = 20cm
Quãng đường vật đi đc lớn nhất khi nó đi quanh VTCB. Trong thời gian 1/6 chu kỳ, góc quay là 1/6 * 360 = 600
Như vậy, ứng với véc tơ quay từ M đến N.
Quãng đường Max = 10 + 10 = 20cm.
Chọn C.