Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn gốc tọa độ tại vị trí xe hãm phanh.
Chiều \(\left(+\right)\) là chiều chuyển động \(\left(v\ge0\right)\).
Gốc thời gian là thời điểm xe hãm phanh.
Lúc \(t=0\) thì \(v_0=72km/h=20m/s\)
\(t=10s\) thì \(v=0\)
\(a,a=?m/s^2\)
Ta có : \(a=\dfrac{\Delta v}{\Delta t}=\dfrac{v-v_0}{10}=\dfrac{0-20}{10}=-2m/s^2\)
\(b,s=?m\)
Ta có : \(d=v_0t+\dfrac{1}{2}at^2=20.10+\dfrac{1}{2}\left(-2\right).10^2=100\left(m\right)\)
Do \(v\ge0\Rightarrow s=d=100m\)
\(c,\) Quãng đường đi được của xe trong 8s đầu là :
\(s_1=v_0t_1+\dfrac{1}{2}at_1^2=20.8+\dfrac{1}{2}\left(-2\right).8^2=96\left(m\right)\)
Quãng đường đi được của xe trong 2s cuối là : \(s-s_1=100-96=4\left(m\right)\)
Vì quãng đường trong 2s đầu và 2s cuối có cùng thời gian nên ta có s của 2s đầu và cuối bằng nhau.
Vậy ...
Đổi: \(v_0=54\)km/h=15m/s
Xe đang đi thì hãm phanh dừng lại\(\Rightarrow v=0\)m/s
Gia tốc vật: \(v=v_0+at\)
\(\Rightarrow a=\dfrac{v-v_0}{t}=\dfrac{0-15}{30}=-0,5\)m/s2
Thời gian xe đi đc 15m cuối trc khi dừng hẳn:
\(S=v_0t+\dfrac{1}{2}at^2=15\cdot15+\dfrac{1}{2}\cdot(-0,5)\cdot15^2=168,75m\)
(đề bài câu hỏi hơi lạ nhé, theo mình là nên tính quãng đường trong 15s cuối thì đúng hơn)
Đổi 54km/h=15m/s
\(a=\dfrac{v-v_0}{t}=\dfrac{0-15}{30}=-0,5\left(\dfrac{m}{s^2}\right)\)
Quãng đường ô tô đi hết là:
\(S=\dfrac{v^2-v_0^2}{2a}=\dfrac{-\left(15^2\right)}{2\cdot\left(-0,5\right)}=225\left(m\right)\)
Quãng đường vật đi trong 15s đầu là:
\(S_1=v_ot+\dfrac{1}{2}at^2=15\cdot15+\dfrac{1}{2}\cdot\left(-0,5\right)\cdot15=168,75\)
Quãng đường vật đi trong 15s cuối là:
\(S_2=S-S_1=225-168,75=56,25\left(m\right)\)
Giải: Chọn chiều dương là chiều chuyển động của xe máy, gốc tọa độ tại vị trí hãm phanh, gốc thời gian là lúc hãm hanh
Ta có v 0 = 54 3 , 6 = 15 m / s xe dừng lại sau 10s nên v 1 = 0 m / s
v 1 = v 0 + a t ⇒ a = v 1 − v 0 t = 0 − 15 10 = − 1 , 5 m / s 2
Vận tốc của oto sau khi hãm phanh được 6s v 6 = v 0 + a t 6 ⇒ v 6 = 15 − 1 , 5.6 = 6 m / s
quãng đường đi đc trong giây 1
\(S=v_0t+\frac{at^2}{2}\Leftrightarrow0,25=54.1+\frac{a1^2}{2}\Rightarrow a=...\)
\(S_2=v_0t_2+\frac{at_2}{2}=...\)