Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
Phương trình tổng quát: \(x= A\cos(\omega t +\varphi)\)
Áp dụng công thức độc lập: \(A^2 = x^2 +\frac{v^2}{\omega ^2} \Rightarrow (\frac{x}{A})^2+(\frac{v}{\omega A})^2=1\)\(\Rightarrow\left\{ \begin{array}{} A^2 = 16\ \\ \omega^2 A^2 =640 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} A = 4\ \\ \omega =2\pi \end{array} \right.\)
t = 0\(\Rightarrow\left\{ \begin{array}{} x_0 = A/2\\ v_0 <0 \end{array} \right.\)\(\Rightarrow\left\{ \begin{array}{} \cos \varphi = \frac{1}{2}=0,5\\ \sin \varphi >0 \end{array} \right. \Rightarrow \varphi = \frac{\pi}{3}\)
Phương trình dao động: \(x=4\cos(2\pi t +\frac{\pi}{3}) \ (cm)\)
Ta có $x_1=x_{12}-x_2=x_{12}-(x_{23}-(x_{13}-x_1)$
$\Rightarrow$ $2x_1=x_{12}-x_{23}+x_{13}$. Bấm máy tính ta được
${x_1}={3\sqrt{6}}\cos\left({\pi t + \dfrac{\pi}{12}} \right)$
${x_3}={3\sqrt{2}}\cos\left({\pi t + \dfrac{7\pi}{12}} \right)$
Suy ra hai dao động vuông pha, như vậy khi x1 đạt giá trị cực đại thì x3 bằng 0.
cách bấm máy để ra phương trình dao động làm như thế nào vậy ạ
Phương trình tổng quát: \(x = Acos(\omega t +\varphi)\)
Tốc độ trung bình của vật là \(v = \frac{\text{quãng đường đi được}}{t}\)
(chú ý là tốc độ trung bình khác với vận tốc trung bình vì vận tốc trung bình = \(\frac{x_{cuoi}-x_{dau}}{t}\))
Dùng đường tròn để tìm quãng đường và thời gian đi
4 -4 2 3 2 3 - M N a π/6 π/6 H K
Vật đi được từ điểm N (\(x = -2\sqrt{3}\) hường theo chiều dương của trục x) đến điểm M (\(x = 2\sqrt{3}\) hướng theo chiều dương của trục x) tức là ứng với cung \(\stackrel\frown{NaM}\)
Quãng đường đi được là: \(S = HK= 2\sqrt{3}+ 2\sqrt{3} = 4\sqrt{3}cm.\)
Thời gian đi \(t = \frac{\varphi}{\omega} = \frac{\pi/3+\pi/3}{8\pi} = \frac{1}{12}s.\)
Vận tốc trung bình là \(v = \frac{4\sqrt{3}}{1/12} = 48 \sqrt{3}cm/s.\)
Chọn đáp án. D
Làm sao biết được là pi/6 vậy ạ. C chỉ giúp mình được không ạ?
+ Hai thời điểm này vuông pha nhau. Biểu diễn các vị trí tương ứng trên đường tròn. Ta thu được: x = -2 cm
Đáp án C