Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\omega=\frac{2\pi}{T}=2\pi\)(rad/s)
Vận tốc cực đại \(v_{max}=\omega A=2\pi.5=10\pi\)(cm/s)
Vì vận tốc là đại lượng biến thiên điều hòa theo thời gian, nên ta khảo sát nó bằng véc tơ quay.
10π v 5π M N -10π O
Tại thời điểm t, trạng thái của vận tốc ứng với véc tơ OM, sau 1/6 s = 1/6 T, véc tơ quay: 1/6.360 = 600
Khi đó, trạng thái của vận tốc ứng với véc tơ ON --> Vận tốc đạt giá trị cực đại là: \(10\pi\) (cm/s)
Đáp án B.
Biên độ: \(A^2=x^2+\dfrac{v^2}{\omega^2}=(2\sqrt 3)^2+\dfrac{(20\sqrt 2)^2}{(10\sqrt 2)^2}\)
\(\Rightarrow A = 4cm\)
\(\cos\varphi = \dfrac{x}{A}=\dfrac{2\sqrt 3}{4}\)
\(v>0\Rightarrow \varphi < 0\)
Suy ra: \(\varphi=-\dfrac{\pi}{6}(rad)\)
Vậy: \(x=4\cos(10\sqrt 2 t-\dfrac{\pi}{6})(cm)\)
Lúc t=0 vật ở vị trí có li độ là A/2.
Do có yêu cầu chiều âm nên t2011=t1 + (2011-1)T
Từ A/2 theo chiều âm đến cân bằng là T/12 suy ra t2011= T/12+2010T=\(\frac{24121T}{12}\)
+ Biểu diễn dao động này bằng véc tơ quay.
+ Sau mỗi chu kì, chất điểm qua VTCB theo chiều âm 1 lần.
Như vậy, sau 2010 chu kì, chất điểm qua VTCB theo chiều âm là 2010 lần.
+ Lần cuối cùng véc tơ quay 1 góc 300 để đến VTCB theo chiều âm.
Như vậy, thời gian ở lần cuối là \(\dfrac{30}{360}T=T/6\)
Vậy, tổng thời gian là: \((2010+1/6).T\)
Chọn đáp án D
Khi v = 0 thì x = ± A . Thời gian ngắn nhất đi từ x = 0 đến x = ± A là T 4 .