Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Muốn kéo thang máy lên thì lực căng cực tiểu T phải bằng trọng lượng P của thang: T = P = mg = 600.10 = 6000N.
Công cực tiểu của lực căng T là:Amin = T.s = 900000J = 900kJ
b, Gọi Fh là lực hãm. Muốn thang xuống đều thì ta phải có:
T’ + Fh = P Fh = P – T’= 6000 – 5400 = 600N.
Công của lực hãm là: Ah = Fh.s = 600.150 = 90.000J = 90kJ.
Muốn kéo thang máy lên thì lực căng cực tiểu T phải bằng trọng lượng P của thang:
T = P = m g = 600 . 10 = 6000 N .
Công cực tiểu của lực căng T là: A m i n = T . s = 900000 J = 900 k J
Chọn đáp án B
Gia tốc của vật trong từng giai đoạn chuyển động
+ GĐ 1: a 1 = v 2 − v 1 t 1 = 5 − 0 2 = 2 , 5 m / s 2
+ GĐ 2: a 2 = v 3 − v 2 t 2 = 5 − 5 8 = 0 m / s 2
+ GĐ 3: a 3 = v 2 − v 2 t 3 = 0 − 5 2 = − 2 , 5 m / s 2
a. + Giai đoạn 1: Thang máy đi lên nhanh dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↓ ↓ g → ⇒ g / = g + a q t
⇒ g / = 10 + 2 , 5 = 12 , 5 m / s 2 ⇒ T = P / = m g / = 1000.12 , 5 = 12500 N
+ Giai đoạn 2: Vì thang máy chuyển động thẳng đều nên a = 0 m / s 2
⇒ T = P = m g = 1000.10 = 10000 N
+ Giai đoạn 3: Đi lên chậm dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↑ ↓ g → ⇒ g / = g − a q t
⇒ g / = 10 − 2 , 5 = 7 , 5 m / s 2 ⇒ T = P / = m g / = 1000.7 , 5 = 7500 N
b. Thang máy đi xuống
+ Giai đoạn 1: Đi xuống nhanh dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↑ ↓ g → ⇒ g / = g − a q t
⇒ g / = 10 − 2 , 5 = 7 , 5 m / s 2 ⇒ T = P / = m g / = 1000.7 , 5 = 7500 N
+ Giai đoạn 2: Vì thang máy chuyển động thẳng đều nên a = 0 m / s 2 ⇒ T = P = m g = 1000.10 = 10000 N
+ Giai đoạn 3: Đi xuống chậm dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↓ ↓ g → ⇒ g / = g + a q t
c. Thang máy đi xuống
+ Giai đoạn 1: Đi xuống nhanh dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↑ ↓ g → ⇒ g / = g − a q t
⇒ g / = 10 − 2 , 5 = 7 , 5 m / s 2 ⇒ N = P / = m g / = 80.7 , 5 = 600 N
+ Giai đoạn 2: Vì thang máy chuyển động thẳng đều nên a = 0 m / s 2 ⇒ T = P = m g = 80.10 = 800 N
+ Giai đoạn 3: Đi xuống chậm dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↓ ↓ g → ⇒ g / = g + a q t
⇒ g / = 10 + 2 , 5 = 12 , 5 m / s 2 ⇒ N = P / = m g / = 80.12 , 5 = 1000 N
Để trọng lượng của ngừơi bằng 0 khi
P / = 0 ⇒ g / = 0 ⇒ a → q t ↑ ↓ g → a q t = g
Tức là lúc này thang máy rơi tự do.
Đáp án A.
Áp dụng định luật II Niu-tơn, chiều dương hướng xuống:
Vật nặng chịu lực căng T → (ngoại lực) tác dụng, chuyển động từ mặt đất lên tới độ cao h = 10 m và đạt được vận tốc v = 0,5 m. Trong trường hợp này, độ biến thiên cơ năng của vật có giá trị bằng công do ngoại lực thực hiện, nên ta có :
m v 2 /2 + mgh = Th
suy ra lực căng của sợi dây cáp :
T = m( v 2 /2h + g) ≈ 500(4,5. 0 , 6 2 /2 + 9,8) = 4920(N)
Nếu dây cáp chịu được lực căng tối đa T m a x = 6000 N > 4920 N, thì ở cùng độ cao nêu trên vật có thể đạt được vận tốc tối đa v m a x sao cho :
m v m a x 2 /2 + mgh = T m a x h
Chọn đáp án A
+ Giai đoạn 1: Thang máy đi lên nhanh dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↓ ↓ g → ⇒ g / = g + a q t ⇒ g / = 10 + 2 , 5 = 12 , 5 m / s 2 ⇒ T = P / = m g / = 1000.12 , 5 = 12500 N
+ Giai đoạn 2: Vì thang máy chuyển động thẳng đều nên a = 0 m / s 2 ⇒ T = P = m g = 1000.10 = 10000 N
+ Giai đoạn 3: Đi lên chậm dần đều với gia tốc 2 , 5 m / s 2 ⇒ a → q t ↑ ↓ g → ⇒ g / = g − a q t ⇒ g / = 10 − 2 , 5 = 7 , 5 m / s 2 ⇒ T = P / = m g / = 1000.7 , 5 = 7500 N
Vật chịu tác dụng của hai lực: lực căng T → của sợi dây cáp hướng thẳng đứng lên phía trên, trọng lực P → hướng thẳng đứng xuống phía dưới. Chọn chiều chuyển động của vật là chiều dương.
Áp dụng định luật II Niu-tơn đối với chuyển động của vật :
ma = P - T = mg - T
suy ra lực căng của sợi dây cáp : T = m(g - a). Do đó, công thực hiện bởi lực căng :
A 1 = -Ts = -ms(g - a) = -50.20.(9,8 - 2,5) = -7,3 kJ
Gọi F h là lực hãm. Muốn thang xuống đều thì ta phải có:
T ' + F h = P → F h = P − T ' = 6000 − 5400 = 600 N .
Công của lực hãm là: A h = F h . s = 600 . 150 = 90 . 000 J = 90 k J .
Chọn đáp án A