Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:
\(\dfrac{b}{7}=\dfrac{c}{24}=k\Rightarrow b=7k,c=24k\)
Theo định lí Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
nên a = 25k
Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.
Gọi b, c là độ dài các cạnh góc vuông,a là độ dai cạnh huyền (tính bằng cm). Ta có:
b7=c24=k⇒b=7k,c=24kb7=c24=k⇒b=7k,c=24k
Theo định lí Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
nên a = 25k
Theo đề bài a + b + c = 112 (cm). Từ đó ta tính được k = 2. Vậy a = 50cm.
Gọi b, c là độ dài các cạnh góc vuông, a là độ dài cạnh huyền (tính bằng cm) ( 0 < b; c < a)
+) Do các cạnh góc vuông tỉ lệ với 7 và 24 nên:
⇒ b = 7k, c = 24k.
Theo định lý Py-ta-go:
a2 = b2 + c2 = (7k)2 + (24k)2 = 625k2 = (25k)2
Nên a = 25k.
Theo đề bài, chu vi tam giác bằng 112 cm nên: a + b + c = 112 (cm).
Suy ra: 25k + 7k + 24k = 112
Hay 56k = 112
Từ đó ta tính được k = 2. Vậy a = 50cm.
Gọi a,b,c lần lượt là 2 cạnh góc vuông và cạnh huyền của tam giác đó
Theo đề ta có: \(\dfrac{a}{5}=\dfrac{b}{12}\)
Đặt: \(\dfrac{a}{5}=\dfrac{b}{12}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=5k\\b=12k\end{matrix}\right.\)
Tam giác đó vuông. Áp dụng Pitago
=> a2 + b2 = c2
\(\Rightarrow25k^2+144k^2=c^2\)
\(\Rightarrow c^2=169k^2\)
=> c = 13k
Chu vi của tam giác đó = 30
=> a + b + c = 30
=> 5k + 12k + 13k = 30
=> 30k = 30
=> k = 1
c = 13k = 13.1 = 13 (cm)
Vậy độ dài cạnh huyền là 13cm
Gọi độ dài các cạnh góc vuông của tam giác lần lượt là 5k và 12k với k> 0. Dùng định lý Py-ta-go tính được độ dài cạnh huyền là 13k, do đó
5k +12k + 13k = 30 => k = 1.
Từ đó độ dài cạnh huyền là 13 cm.
chu vi tam giai bai nay mk chiu han
mk chỉ tính đc thôi ko bít cách làm
bài nỲ dùng ddingj lý pi-ta-go
nhưng mk chưa học đến
ko giúp đc bn