Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải :
Ta có :
p = 42.k + r ( k,r thuộc N , 0<r<42 )
p = 2.3.7 k+r
Vì p là số nguyên tố nên p ko chia hết cho 2, ko chia hết cho 3 và ko chia hết cho 7.
Mà r là hợp số và r < 42
Vậy các hợp số ko chia hết cho 2 và 9 là : 33; 35; 39; 15; 21; 25.
Các hợp số ko chia hết cho 7 là : 15; 25; 33
Các hợp số ko chia hết cho 3 là : 25.
=> r = 25
Vậy : p = 42k + 25
Vì p chia 42 dư r
=> p = 42k + r ( k thuộc N ; 0<r<42 ; r là hợp số)
=> p = 3.7.2k +r
Vì p là số nguyên tố => r ko chia hết cho 3 , 7 , 2
r nhỏ hơn 42 mà ko chia hết cho 3 , 7 , 2 chỉ có 25
Vậy r = 25
Nhấn đúng cho mk nha!!!!!!
ta có
p= 42.k +r= 2.3.7.k+r
vì r là hợp số r <42 r hpair phân tích 2 số r = x.y
x,y không thể là 2,3,7 và cũng không thể là số chia hết cho được vì thế p là số nguyên tố
vậy x,y [ 5,11, 13]
nếu x=5 và y = 11 thì r.y = 55 >43
vậy chỉ còn trường hợp x=5 r = 5. khi đó r = 25
Ta có:
p = 42.k + r. = 2.3.7.k + r
Vì r là hợp số và r < 42 nên r phải là tích của 2 số r = x.y
x và y không thể là 2, 3, 7 và cũng không thể là số chia hết cho 2, 3, 7 được vì nếu thế thì p không là số nguyên tố.
Vậy x và y có thể là các số trong các số {5,11,13, ..}
Nếu x=5 và y=11 thì r = x.y =55 > 42
Vậy chỉ còn trường hợp x = 5, y = 5. Khi đó r = 25
Vì r là hợp số nên r và 42 là nguyên tố cùng nhau
Vì 42 = 2 x 3 x 7 nên R không chia hết cho 2, 3 và 7 hoặc bội của chúng
Trong các số từ 1 đến 41 chỉ có 5 và 25 thỏa mãn
Vì r là hợp số nên chọn r = 25 thỏa mãn đầu bài
Ta có :
p = 42k + r = 2 . 3 . 7 k + r ( k , r \(\in\)N , 0 < r < 42 ) . Vì p là số nguyên tố nên r không chia hết cho 2 , 3 , 7 .
Các hợp số nhỏ hơn 42 và không chia hết cho 2 là 9 , 15 , 21 , 25 , 27 , 33 , 35 , 39 .
Loại đi các số chia hết cho 3 , 7 , chỉ còn 25 .
Vậy r = 25