K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi vận tốc dự định là \(x\left(km/h\right)x>6\)

Thực tế \(\left(x-6\right),\left(x+12\right)\)

Thời gian dự định  \(t=\frac{80}{x}\)

Thời gian thực tế \(\frac{40}{\left(x-6\right)}+\frac{40}{\left(x+12\right)}\)

Ta có pt: \(\frac{80}{x}=\frac{40}{\left(x-6\right)}+\frac{40}{\left(x+12\right)}\)

\(\Leftrightarrow x=24\)

Vận tốc dự định là \(24km/h\)

AH
Akai Haruma
Giáo viên
13 tháng 4 2021

Lời giải:

Giả sử vận tốc dự định là $a$ km/h. ĐK: $a>6$

Thời gian dự định: $\frac{60}{a}$.

Thời gian ô tô đi nửa quãng đường đầu: $\frac{30}{a-6}$ (h)

Thời gian ô tô đi nửa quãng đường sau: $\frac{30}{a+10}$ (h)

Vì ô tô vẫn đảm bảo thời gian dự định nên: 

$\frac{30}{a-6}+\frac{30}{a+10}=\frac{60}{a}$

Với điều kiện $a>6$ ta dễ dàng giải ra $a=30$ (km/h) 

Thời gian dự định là: $\frac{60}{a}=\frac{60}{30}=2$ (h)

1 ) Một ca nô dự định đi từ A đến B trong thời gian đã định . Nếu ca nô tăng 3 km/h thì đến nơi sớm 2 giờ . Nếu ca nô giảm vận tốc 3 km/h thì đến nơi chậm 3 giờ  . Tính chiều dài khúc sông AB . 2) Một người đi xe đạp dự định đi hết quãng đường AB với vận tốc 10 km/h . Sau khi đi được nửa quãng đường với vận tốc dự định người ấy nghỉ 30 phút . Vì muốn đến được điểm...
Đọc tiếp

1 ) Một ca nô dự định đi từ A đến B trong thời gian đã định . Nếu ca nô tăng 3 km/h thì đến nơi sớm 2 giờ . Nếu ca nô giảm vận tốc 3 km/h thì đến nơi chậm 3 giờ  . Tính chiều dài khúc sông AB . 

2) Một người đi xe đạp dự định đi hết quãng đường AB với vận tốc 10 km/h . Sau khi đi được nửa quãng đường với vận tốc dự định người ấy nghỉ 30 phút . Vì muốn đến được điểm B kịp giờ nên người ấy đi với vận tốc 15 km/h trên quãng đường còn lại . Tính quãng đường AB . 

3)Một ô tô đi từ A đến B với vận tốc và thời gian đã định . Nếu vận tốc ô tô tăng thêm 10 km/h  thì đến B sớm hơn 30 phút so với dự định . Nếu vận tốc ô tô giảm đi 5 km/h thì đến B muộn 20 phút so với dự định . Tính quãng đường AB . 

1
23 tháng 3 2017

bạn đưa từng câu một thì sẽ có người giải đó

18 tháng 1 2018

Bài tương tự ở đây bạn nhé:

Câu hỏi của Anh Aries - Toán lớp 8 - Học toán với OnlineMath

12 tháng 1 2022

Gọi x(km/h) là vận tốc dự định của ô tô đi từ A đến B

y(h) là thời gian dự định của ô tô đi từ A đến B

đk: x>10 , y>1

xy(km) là quãng đường từ A đến B

Nếu vận tốc tăng 20 km/h thì thời gian giảm 1h nên ta có phương trình:

xy=(x+20)(y-1) (1)

Nếu vận tốc giảm 10km/h thì thời gian tăng 1h nên ta có phương trình:

xy=(x-10)(y+1) (2)

Từ (1) và (2) ta có hệ phương trình:

{xy=(x+20)(y−1)xy=(x−10)(y+1)⇔{xy=xy−x+20y−20xy=xy+x−10y−10{xy=(x+20)(y−1)xy=(x−10)(y+1)⇔{xy=xy−x+20y−20xy=xy+x−10y−10

⇔{x−20y=−20−x+10y=−10⇔{−10y=−30−x=10y=−10⇔{x−20y=−20−x+10y=−10⇔{−10y=−30−x=10y=−10

y=3\\-x+10.3=-10

\Vậy vận tốc dự định của ô tô là 40km/h; thời gian dự định của ô tô là 3h

28 tháng 2 2016

Gọi vận tốc ô tô dự định đi từ A đến B là  \(x\) (km/h). ĐK: \(x>5\)

Gọi thời gian ô tô dự định đi từ A đến B là  \(y\) (h). ĐK: \(y>0\)

Suy ra độ dài quãng đường AB là Vận tốc x thời gian = \(xy\) (km)

Đổi: \(30ph=\frac{1}{2}h;20ph=\frac{1}{3}h\)

Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x+10\) (km/h)

Khi đó ô tô đến B sớm hơn 30 phút so với dự định nên thời gian ô tô đi đến B là \(y-\frac{1}{2}\)(h)

Suy ra độ dài quãng đường AB: \(\left(x+10\right).\left(y-\frac{1}{2}\right)\)(km)

Ta có phương trình: \(xy=\left(x+10\right).\left(y-\frac{1}{2}\right)\)(1)

Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x-5\) (km/h)

Khi đó ô tô đến B muộn 20 phút so với dự định nê thời gian ô tô đi đến B là \(y+\frac{1}{3}\)(h)

Suy ra độ dài quãng đường AB: \(\left(x-5\right).\left(y+\frac{1}{3}\right)\)(km)

Ta có phương trình: \(xy=\left(x-5\right).\left(y+\frac{1}{3}\right)\)(2)

Từ (1) và (2) ta có hệ phương trình: \( \begin{cases} xy= (x+10).(y- {\frac{1}{2}}) & \quad \\ xy= (x-5).(y+ {\frac{1}{3}}) & \quad \\ \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x= 50 & \quad \\ y= 3 & \quad \\ \end{cases}\)(tmđk)

Vận tốc ô tô  dự định đi từ A đến B là 50 km/h

Thời gian ô tô  dự định đi từ A đến B là 3 h

Suy ra độ dài quãng đường AB: \(xy=50.3=150\)(km)

Vậy độ dài quãng đường AB là 150 km.
(Hệ phương trình thì bạn tự giải nhé)

28 tháng 2 2016

Gọi vận tốc ô tô dự định đi từ A đến B là  \(x\) (km/h). ĐK: \(x>5\)

Gọi thời gian ô tô dự định đi từ A đến B là  \(y\) (h). ĐK: \(y>0\)

Suy ra độ dài quãng đường AB là Vận tốc x thời gian = \(xy\) (km)

Đổi: \(30ph=\frac{1}{2}h;20ph=\frac{1}{3}h\)

Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x+10\) (km/h)

Khi đó ô tô đến B sớm hơn 30 phút so với dự định nên thời gian ô tô đi đến B là \(y-\frac{1}{2}\)(h)

Suy ra độ dài quãng đường AB: \(\left(x+10\right).\left(y-\frac{1}{2}\right)\)(km)

Ta có phương trình: \(xy=\left(x+10\right).\left(y-\frac{1}{2}\right)\)(1)

Nếu vận tốc ô tô tăng thêm 10km/h thì vận tốc ô tô khi đó là: \(x-5\) (km/h)

Khi đó ô tô đến B B muộn 20 phút so với dự định nê thời gian ô tô đi đến B là \(y+\frac{1}{3}\)(h)

Suy ra độ dài quãng đường AB: \(\left(x-5\right).\left(y+\frac{1}{3}\right)\)(km)

Ta có phương trình: \(xy=\left(x-5\right).\left(y+\frac{1}{3}\right)\)(2)

Từ (1) và (2) ta có hệ phương trình: \( \begin{cases} xy= (x+10).(y- {\frac{1}{2}}) & \quad \\ xy= (x-5).(y+ {\frac{1}{3}}) & \quad \\ \end{cases} \) \(\Leftrightarrow\) \(\begin{cases} x= 50 & \quad \\ y= 3 & \quad \\ \end{cases}\)(tmđk)

Vận tốc ô tô  dự định đi từ A đến B là 50 km/h

Thời gian ô tô  dự định đi từ A đến B là 3 h

Suy ra độ dài quãng đường AB: \(xy=50.3=150\)(km)

Vậy độ dài quãng đường AB là 150 km.
(Hệ phương trình thì bạn tự giải nhé)

17 tháng 5 2020

Gọi vận tốc dự định của ô tô là x (km/h, x>10)

      thời gian dự định ô tô đi là y (giờ, y>1 )

Quãng đường AB dài là: \(xy\left(km\right)\)

 Nếu vận tốc tăng 20 km/giờ thì ô tô đến B sớm hơn dự định 1 giờ.

 \(\Rightarrow\left(x+20\right).\left(y-1\right)=xy\)

\(\Leftrightarrow xy-x+20y-20=xy\)

\(\Leftrightarrow-x+20y=20\)(1)

Nếu vận tốc giảm bớt đi 10 km/giờ thì ô đến B chậm so với dự định 1 giờ

\(\Rightarrow\left(x-10\right).\left(y+1\right)=xy\)

\(\Leftrightarrow xy+x-10y-10=xy\)

\(\Leftrightarrow x-10y=10\)(2)

Từ (1) và (2) ta có hệ phương trình \(\hept{\begin{cases}-x+20y=20\\x-10y=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}10y=30\\x-10y=10\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=3\left(TM\right)\\x=40\left(TM\right)\end{cases}}\)

Vậy độ dài quãng đường AB là: \(40.3=120\left(km\right)\)