Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Lấy lần lượt 3 cuốn sách có 15.14.13 = 2730 cách
Lấy 2 cuốn sách đầu là Toán và cuốn còn lại là Văn có 10.9.5 = 450 cách
Xác suất để được hai cuốn sách đầu là Toán, cuốn thứ ba là Văn:
Có 5 cuốn sách Toán, 2 cuốn sách Lý và 1 cuốn sách Hóa đôi một khác nhau. Xếp ngẫu nhiên tám cuốn sách nằm ngang trên một cái kệ. Số cách xếp sao cho cuốn sách Hóa không nằm giữa liền kề hai cuốn sách Lý là:
A.39600
B. 720
C.30888
D. 38880
Nghĩa là loại đi trường hợp xếp mà có sự xuất hiện của bộ Lý-Hóa-Lý nằm đúng như vầy, sát nhau đồng thời Hóa kẹp giữa 2 Lý
Đáp án B
Số cách chọn 3 cuốn sách trong 10 cuốn để phát ngẫu nhiên cho 3 bạn là A 10 3
Đáp án B.
Chọn 3 cuốn ngẫu nhiên từ 10 cuốn có C 10 3 cách.
Tặng 3 cuốn cho 3 bạn có 3! cách.
Suy ra số cách phát thưởng là 3!. C 10 3 = A 10 3 cách.
Gọi A là biến cố “Giáo viên môn Toán tham khảo bộ sách giáo khoa A”; B là biến cố “Giáo viên môn Toán tham khảo bộ sách giáo khoa B”; E là biến cố “Giáo viên môn Toán không tham khảo cả hai bộ sách giáo khoa A và B”.
Khi đó \(\overline E \) là biến cố “Giáo viên môn Toán tham khảo bộ sách giáo khoa A hoặc B”.
Ta có \(\overline E = A \cup B.\)
\(\begin{array}{l}P\left( {\overline E } \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 63\% + 56\% - 28,5\% = 90,5\% \\ \Rightarrow P\left( E \right) = 1 - P\left( {\overline E } \right) = 1 - 90,5\% = 9,5\% \end{array}\)
Vậy tỉ lệ giáo viên môn Toán các trường trung học phổ thông của tỉnh đó không tham khảo cả hai bộ sách giáo khoa A và B là 9,5%.
Đáp án là A.
• Ta tìm số cách chọn 7 cuốn còn lại sao cho không có đủ 3 môn.
Có 3 trường hợp :
• 7 cuốn còn lại gồm 2 môn toán lý : có C 9 7 cách
• 7 cuốn còn lại gồm 2 môn lý hóa : có C 11 7 cách
• 7 cuốn còn lại gồm 2 môn toán hóa : có C 10 7 cách
Suy ra có C 9 7 + C 11 7 + C 10 7 = 486 cách chọn 7 cuốn còn lại sao cho không có đủ 3 môn. Do đó số cách chọn 8 cuốn sao cho 7 cuốn còn lại có đủ 3 môn là C 15 7 - 486 = 5949 cách.
Xác suất cần tìm là P = 5949 C 15 7 = 661 715
Không gian mẫu là số cách chọn ngẫu nhiên 5 trong 10 cuốn sách rồi tặng cho 5 học sinh.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố Sau khi tặng sách thì mỗi một trong ba loại sách của thầy giáo còn lại ít nhất một cuốn .
Để tìm số phần tử của A, ta tìm số phần tử của biến cố , tức sau khi tặng sách có môn không còn lại cuốn nào.
Vì tổng số sách của hai loại bất kỳ lớn hơn 5 cuốn nên không thể chọn sao cho cùng hết 2 loại sách. Do vậy chỉ có thể một môn hết sách, ta có các khả năng:
Cách tặng sao cho không còn sách Toán, tức là ta tặng 4 cuốn sách toán, 1 cuốn còn lại Lý hoặc Hóa
+) 4 cuốn sách Toán tặng cho 4 người trong 5 người, có cách.
+) 1 người còn lại được tặng 1 cuốn trong 6 cuốn (Lý và Hóa), có .
Suy ra có cách tặng sao cho không còn sách Toán.
Tương tự, có cách tặng sao cho không còn sách Lý.
Tương tự, có cách tặng sao cho không còn sách Hóa.
Suy ra số phần tử của biến cố là.720+2520+2520=5760
Suy ra số phần tử của biến cố A là.30240-5760=24480
Vậy xác suất cần tính
Chọn C.
a) Gọi A là biến cố “Người mua sách A”; B là biến cố “Người mua sách B”; E là biến cố “Người đó không mua cả sách A và sách B”.
Khi đó \(\overline E \) là biến cố “Người đó mua sách A hoặc sách B”.
Ta có \(\overline E = A \cup B.\)
\(P\left( {\overline E } \right) = P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right) - P\left( {AB} \right) = 50\% + 70\% - 30\% = 90\% \)
Vậy xác suất để người mua đó mua ít nhất một trong hai sách A hoặc B là \(90\% \)
b) Ta có \(P\left( E \right) = 1 - P\left( {\overline E } \right) = 1 - 90\% = 10\% \)
Vậy xác suất để người mua đó không mua cả sách A và sách B là 10%.