Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
thời gian người đó đi trong nửa quãng đường đầu là:
t1\(=\frac{S_1}{v_1}=\frac{S}{2v_1}=\frac{S}{40}\left(1\right)\)
vận tốc trung bình của người đó là:
\(v_{tb}=\frac{S}{t_1+t_2+t_3}=\frac{S}{t_1+t'}\left(3\right)\)
ta lại có:
S2+S3=S/2
\(\Leftrightarrow v_2t_2+v_3t_3=\frac{S}{2}\)
\(\Leftrightarrow\frac{15t'}{2}+\frac{25t'}{2}=\frac{S}{2}\)
\(\Leftrightarrow40t'=S\Rightarrow t'=\frac{S}{40}\left(2\right)\)
thế (1) và (2) vào phương trình trên ta có:
\(v_{tb}=\frac{S}{\frac{S}{40}+\frac{S}{40}}=\frac{S}{S\left(\frac{2}{40}\right)}=\frac{1}{\frac{2}{40}}=20\)
quãng đường người đó đã đi là:
S=vtb.t=60km
vậy AB dài 60km
\(s_1=\dfrac{1}{3}s=v_1t_1\Rightarrow t_1=\dfrac{s}{3v_1}\) (1)
Do \(t_2=2t_3\) nên \(\dfrac{s_2}{v_2}=2.\dfrac{s_3}{v_3}\) (2)
Ta có: s2 + s3 = \(\dfrac{2}{3}s\) (3)
Từ (2) và (3) => \(\dfrac{s_3}{v_3}=t_3=\dfrac{2s}{3\left(2v_2+v_3\right)}\) (4)
=> \(\dfrac{s_2}{v_2}=t_2=\dfrac{4s}{3\left(2v_2+v_3\right)}\) (5)
Từ (1), (4), (5), ta có vận tốc tb của ng đó trên cả quãng đường:
\(v_{tb}=\dfrac{s}{t_1+t_2+t_3}=\dfrac{1}{\dfrac{1}{3v_1}+\dfrac{2}{3\left(2v_2+v_3\right)}+\dfrac{4}{3\left(2v_2+v_3\right)}}\)
= \(\dfrac{3v_1\left(2v_2+v_3\right)}{6v_1+2v_2+v_3}\)
\(\dfrac{1}{3}\) quãng đường đầu đi với vận tốc V1 : V1 = \(\dfrac{1}{3}\).S = V1
Quãng đường còn lại đi với vận tốc V2 và V3= \(\dfrac{2}{3}\)S = V2.t2 +V3.t3
Ta có: t2= (\(\dfrac{2}{3}\)) . (t2 + t3) => t3= \(\dfrac{1}{2}\). t2
=> \(\dfrac{2}{3}\).S = V2.t2 + \(\dfrac{1}{2}\) . V3.t2 = ( V2 + \(\dfrac{1}{2}\). V3.).t2
Vận tốc trung bình: V = \(\dfrac{s}{t}\) = \(\dfrac{\left[V_1.t_1+\left(V_2+\dfrac{1}{2}.V_3\right).\right]t_2}{t_1+t_2+t_3}\)
= \(\dfrac{\left[V_1.t_1+\left(V_2+\dfrac{1}{2}.V_3\right).\right]t_2}{t_1+\dfrac{1}{2}t_2}\)
Ta thấy: \(\dfrac{2}{3}\)S = 2.(\(\dfrac{1}{3}\)S) (=) (V2 + \(\dfrac{1}{2}\) . V3 ). t2 = 2. V1 . t1
=> [V1.t1 + (V2 + \(\dfrac{1}{2}\) . V3). t2] = 3.V1.t1 và t2= \(\dfrac{\left(2.V_1.t_1\right)}{V_2+\dfrac{1}{2}.V_3}\)
Thay vào vận tốc trung bình, khử t1, quy đồng mẫu, cuối cùng ra được: v=\(\dfrac{\left[3.V_1\left(V_2+\dfrac{1}{2}.V_3\right)\right]}{\left[3.V_1+V_2+\dfrac{1}{2}.V_3\right]}\)
hay v= \(\dfrac{\left[3.V_1\left(2.V_2+V_3\right)\right]}{\left[6.V_1+2.V_2+V_3\right]}\)
Vận tốc trung bình của xe trên quãng đường còn lại là
\(v'=\dfrac{t\left(\dfrac{2v_2}{3}+\dfrac{v_3}{3}\right)}{t}=\dfrac{1\left(\dfrac{2\cdot50}{3}+\dfrac{40}{3}\right)}{1}=\dfrac{140}{3}\left(\dfrac{km}{h}\right)\)
Vận tốc trung bình trên cả quảng đường là
\(v=\dfrac{s}{s\left(\dfrac{1}{3v_1}+\dfrac{2}{3v'}\right)}=\dfrac{1}{1\left(\dfrac{1}{3\cdot60}+\dfrac{2}{3\cdot\dfrac{140}{3}}\right)}=50,4\left(\dfrac{km}{h}\right)\)
Bạn nếu có phát hiện chỗ sai hay ko hiểu về cách giải của mình thì có thể ib hỏi nha. Mình giải có hơi tắt ý. Chúc bạn một ngày tốt lành!
Giải thích các bước giải:
*đối với người đi từ M đến N
thời gian người đó đi hết nửa quãng đường đầu là
T1=0.5S/v1 =S/40 (h)
thời gian người đó đi hết nửa quãng đường còn lại là
T2=0.5S/V2=S/120 (h)
*Đối với người đi từ N đến M
quãng đường người đó đi được trong nửa giờ đầu là
S1'=0.5t'.v1=10t'(km)
Quãng đường người đó đi trong nửa giờ au là
S2'= 0.5t'.v2=30t'
Mà S1'+S2'=S
10t'+30t'=S
t'=S/40(h)
Vì nếu xe xuất phát từ N đi muộn hơn xe đi từ M 0.5h thì hai xe gặp nhau cùng một lúc nên ta có
T1+T2 =t'+0.5
S/40+s/120=s/40+0.5
S=60(km )
a/ Thời gian đi hết đoạn đường đầu :
\(t=\dfrac{s}{v}=\dfrac{90}{45}=2\left(h\right)\)
b/ Vận tốc trung bình là :
\(v_{tb}=\dfrac{s}{t_1+t_2}=\dfrac{120}{2+1}=40\left(km\backslash h\right)\)
Vậy..
ta có:
\(t_1=\frac{S_1}{v_1}=\frac{S}{3v_1}=\frac{S}{42}\)
\(t_2=\frac{S_2}{v_2}=\frac{S}{3v_2}=\frac{S}{48}\)
\(t_3=\frac{S_3}{v_3}=\frac{S}{3v_3}=\frac{S}{24}\)
vận tốc trung bình của người đó là:
\(v_{tb}=\frac{S}{t_1+t_2+t_3}=\frac{S}{\frac{S}{42}+\frac{S}{48}+\frac{S}{24}}=\frac{S}{S\left(\frac{1}{42}+\frac{1}{48}+\frac{1}{24}\right)}\)
\(\Leftrightarrow v_{tb}=\frac{1}{\frac{1}{42}+\frac{1}{48}+\frac{1}{24}}=11,5\)
b)S=vtb.t=17,25km
a) Gọi S là độ dài AB (km)
t1,t2,t3 lần lượt là thời gian đi trên các đoạn đường
Thời gian đi trên đoạn đường đầu là : \(t_1=\dfrac{S}{3}:14 =\dfrac{S}{42} (h)\)
Thời gian đi trên đoạn đường thứ 2 là : \(t_2=\dfrac{S}{3}:16 =\dfrac{S}{48} (h)\)
Tthời gian đi trên đoạn đường thứ 3 là : \(t_1=\dfrac{S}{3}:8 =\dfrac{S}{24} (h)\)
Tổng thời gian đi trên AB là: \(t=t_1+t_2+t_3=\dfrac{S}{42}+\dfrac{S}{48}+\dfrac{S}{24}=\dfrac{29S}{336}(h)\)
Vận tốc trung bình: \(v_{tb}=\dfrac{S}{t}=\dfrac{S}{\dfrac{29S}{336}}=\dfrac{336}{29}\approx 11,6(km/h)\)
b) Quãng đường AB là: \(S=v_{tb}.t=11,6.1,5=17,5(km)\)
ta có:
t1=\(\frac{S_1}{v_1}=\frac{S}{2v_1}=\frac{S}{80}\)
vận tốc trung bình của người đó là:
\(v_{tb}=\frac{S_1+S_2+S_3}{t_1+t_2+t_3}=\frac{S}{t_1+t'}\)
ta lại có:
S2+S3=v2t2+v3t3
\(\Leftrightarrow\frac{S}{2}=\frac{v_2t'}{2}+\frac{v_3t'}{2}\)
\(\Leftrightarrow\frac{S}{2}=\frac{45t'+35t'}{2}=\frac{80t'}{2}\)
\(\Rightarrow S=80t'\Rightarrow t'=\frac{S}{80}\)
thế vào công thức tình trung bình ta có:
\(v_{tb}=\frac{S}{\frac{S}{80}+\frac{S}{80}}=\frac{1}{\frac{1}{80}+\frac{1}{80}}=40\)
quãng đường người đó đi là:
S=vtb.t=80km
Gọi S là nửa quãng đường AB.
\(t\)là nửa thời gian đi nửa quãng đường của quãng đường còn lại.
Ta có: \(V_{tb}=\dfrac{S+S}{t_1+t_2}=\dfrac{2S}{t_1+t_2}\)(*)
\(t_1=\dfrac{S}{V_1}=\dfrac{S}{40}\left(1\right)\)
\(S=S_1+S_2=S_1+S_2=35t+45t=80t\)
\(t_2=2t\Rightarrow40t_2=S\)
\(\Leftrightarrow t_2=\dfrac{S}{40}\left(2\right)\)
Thay \(\left(1\right),\left(2\right)\) vào(*) ta có:
\(V_{tb}=\dfrac{2S}{\dfrac{S}{40}+\dfrac{S}{40}}=\dfrac{2S}{S\left(\dfrac{1}{40}+\dfrac{1}{40}\right)}=\dfrac{2}{\dfrac{1}{20}}=40\)(km/h)
Quãng đường AB dài là:
\(S_{AB}=V_{tb}.t'=40.2=80\left(km\right)\)
Vạy quãng đường AB dài 80(km).